期刊文献+

生物因素对次生硫化铜矿堆浸过程动力学的影响 被引量:7

Effect of biological factors on heap bioleaching kinetics of secondary copper sulfide
下载PDF
导出
摘要 假定生物浸出过程细菌的作用是间接作用,以实验室柱浸模拟次生硫化铜矿生物堆浸,基于细菌生长Monod方程及收缩核模型建立细菌生长动力学因子影响硫化矿浸出速率的动力学模型,研究铜浸出速率、溶液总铁、溶液中细菌浓度与时间的关系、细菌产出率和细菌饱和系数对浸出速率影响的动力学规律。动力学研究表明,在浸出早期,氧化浸出速率、溶液中总铁浓度以及溶液中的细菌数量增长较快,而在浸出后期则增长较慢。计算与实际结果表明,细菌最大生长比速率、细菌产出率、细菌饱和常数及溶液中Fe离子的浓度均对硫化矿的氧化浸出速率有明显影响,尤其在浸出早期影响较大。应用动力学模型仿真结果与实际基本符合,可分析生物因素对浸出的影响趋势。 Based on the indirect function of bacteria in the leaching process, Monod equation and Shrink core kinetics equation, the bacteria growth and sulfide bioleaching kinetics model about secondary copper sulfide column bioleaching simulating heap bioleaching were proposed, and the variation rules of copper leaching rate and bacteria and total iron concentration in the solution by the time were determined, and the kinetics of leaching speed affected by bacteria maximal growth specified rates and bacteria yield rate and bacteria saturated coefficient respectively were studied. The results show that in the prophase time of leaching process, the leaching rate, total iron concentration and bacteria cells increase rather quicker than those in the anaphase time of leaching, and the biological factors affect the leaching process when in the prophase time. The results of calculated and experimented of mining heap bioleaching show a good consistence, and it proves that the primary kinetics model can give an availability description about heap bioleaching process.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2007年第2期331-335,共5页 The Chinese Journal of Nonferrous Metals
基金 国家重点基础研究发展规划资助项目(2004CB619205) 国家自然科学基金资助项目(50204001)
关键词 生物冶金 细菌浸出 生物堆浸 次生硫化铜矿 动力学 biohydrometallurgy bioleaching heap leaching secondary copper sulfide kinetics model
  • 相关文献

参考文献5

二级参考文献108

  • 1王淀佐.生物工程与矿物提取技术[A]..1998中国科学技术前沿(中国工程院版)[C].北京:高等教育出版社,1999.155.
  • 2Norris P R, Kelly D P. Dissolution of pyrite (FeS2) by pure and mixed cultures of some aeidophilie bacteria [J]. FEMS Microbiology Letters. 1978. 99:317.
  • 3Tsuchiya H M, Trivedi N C, Schuler M L. Microbial mutualism in ore leaching [J]. Biotechnology and Bioengineering, 1974,16. 991.
  • 4Le Roux N W, Wakerley D S, Hunt S D. Thermophilic Thiobacillus - type bacteria from Icelandic thermal areas [J]. Journal of General Microbiology, 1977, 100:197.
  • 5Brierly C L. Thermophilic micro- organism in extraction of metals from ores [J ]. Development in Industrial Microbiology, 1977, 18:273.
  • 6Norris P R, Marsh R M, Linstrom E B. Growth of mesophilic and thermophilic acidophlic bacteria on sulfur and tetrathionate [J]. Biotechnol Appl Biochem, 1986, 8:318.
  • 7Norris P R, Barr D B. Growth and iron oxidation by moderate thermophiles [J]. FEMS Mierobiol Lett 1985, 28:221.
  • 8Karavaiko G I, Shchetinina E V, Pivoarova T A. Denitrifying bacteria isolation from deposits of sulphide ores [J]. Miikrobiologiya, 1973, 42:128.
  • 9Brock T D, Gustafson J. Ferric iron reduction by sulfur and iron oxidizing bacteria [J]. Applied and Environmental Microbiology, 1976, 32:567.
  • 10Konig H, Skorko R. Glycogen in thermoaeidophlie arehaebaeteria of the genera Sulfolobus, Thermoproteus, Desulfurococcus and Thermococcus [J]. Arch. Mierobiol, 1982, 132:297.

共引文献64

同被引文献74

引证文献7

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部