摘要
在Zeng等人对有界变差函数f的Durrmeyer-Bézier算子在区间(0,1)上收敛于(1/(α+1))f(x+)+(α/(α+1))f(x-)的收敛阶进行研究的基础上,利用基函数的概率性质等方法,对其所给的Durrmeyer-B啨zier算子收敛阶估计结果作进一步的改进,得到其收敛阶的精确估计.
In this paper, we study the rate of convergence of Durrmeyer-Bézier Operaters for functions of bounded variation f and obtain a accurate estimation of coefficient. Our result improves the result of Zeng by making use of probable property of basic functions.
出处
《大学数学》
北大核心
2007年第1期75-78,共4页
College Mathematics