期刊文献+

基于量子遗传算法的多约束QoS路由算法 被引量:3

QoS routing algorithm based on quantum genetic algorithm
下载PDF
导出
摘要 提出了一种基于量子遗传算法解决多约束QoS路由问题的算法,详细讨论了该算法用于解决包含带宽、延时、包丢失率和最小花费等约束条件在内的多约束QoS路由问题,给出了算法实现的方法和具体流程.实验结果表明,与其他2种算法相比,该算法不但能满足QoS约束要求,同时可以均衡链路负载,很好地优化网络资源. This paper first proposes a QoS routing algorithm based on quantum genetic algorithm (QGA), whereby the multi-constraint QoS muting problems can be treated, including constraints such as bandwidth, delay, packet loss rates and least,cost and so on. Concrete method and algorithm are provided. Simulating results show that, compared with the other two algorithms, the algorithm not only satisfies restrictions of QoS , but also balances the load of link layer and optimizes network resources.
出处 《应用科技》 CAS 2007年第3期11-14,共4页 Applied Science and Technology
关键词 QOS路由 量子遗传算法 路由算法 QoS routing QGA routing algorithm
  • 相关文献

参考文献6

  • 1XIAO X P, NI L M. Intemet QoS: a big picture[J]. IEEE Network, 1999, 13 (2):8-18.
  • 2崔勇,吴建平,徐恪,徐明伟.互联网络服务质量路由算法研究综述[J].软件学报,2002,13(11):2065-2075. 被引量:73
  • 3WANG Z, CROWCROFT J. Quality-of-service muting for supporting multimedia applications [ J ]. IEEE Journal on Selected Areas in Communications, 1996, 14 (7):148-154.
  • 4HAN Kukhyun. Genetic quantum algorithm and its application to combinatorial optimization problem [A]. IEEE Proc of the 2000 Congress on Evolutionary Computation [ C ].San Diego, USA,2000.
  • 5NARAYANAN A, MOORE M. Quantum inspired genetic algorithms [A]. In: Proceedings of the 1996 IEE International Conference on Evolutionary Computation (ICEC96)[C]. Nogaya,Japan, 1996.
  • 6杨淑媛,刘芳,焦李成.一种基于量子染色体的遗传算法[J].西安电子科技大学学报,2004,31(1):76-81. 被引量:45

二级参考文献57

  • 1Muldenbein H. Parallel Genetic Algorithms in Combinatorial Optimization[A]. Computer Science and Operation Research--New Developments[M]. New York: Pergamon Press, 1992. 441-453.
  • 2Grefenstette J J, Coped R, Rosmaita B, et al. Genetic Algorithms for the Traveling Salesman Problem[A]. Proceedings of the First International Conference on Genetic Algorithms and Their Applications[C]. NJ: Lawrence Earlbaum Associate, 1985. 160-168.
  • 3Kristinsson K, Dumont G A. System Identification and Control Using Genetic Algorithms[J]. IEEE Trans on Sys, Man and Cybernetic,1992, 22(5): 1033-1046.
  • 4Holland J H. Genetic Algorithms and Classifier Systems: Foundations and Their Applicaitons[A]. Proceedings of the Second International Conference on Genetic Algorithms[C]. Hillsdale: Lawrence Erlbaum Associates, 1987. 82-89.
  • 5Krishnakumar K, Goldberg D E. Control System Optimization Using Genetic Algorithms[J]. Journal of Guidance, Control and Dynamics, 1992, 15(3): 735-740.
  • 6Rudolph G. Convergence Analysis of Canonical Genetic Algorithms[J]. IEEE Trans on Neural Networks, 1994, 5(1): 96-101.
  • 7Stumpf J D, Feng X, Kelnhofer R W. An Enhanced Operator-oriented Genetic Search Algorithm[A]. The First IEEE Conference on Evolutionary Computation[C]. Orlando; IEEE Press, 1994. 235-238.
  • 8Hesser J, Manner R. Towards an Optimal Mutation Probability for Genetic Algorithms[A]. Proceedings of the First Conference on Parallel Problem Solving from Nature[C]. Dortmund: Springer, 1990. 23-32.
  • 9Srinivas M, Patnail L M. Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms[J]. IEEE Trans Syst, Man and Cybem, 1994, 24(4): 656-667.
  • 10Hey T. Quantum Computing: an Introduction[J]. Computing & Control Engineering Journal, 1999, 10(3) : 105-112.

共引文献116

同被引文献15

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部