摘要
支持向量机(SVM)应用到超光谱图像分类中有较好的识别效果,但它在解决多分类问题时,存在不可分区域的局限性.为此提出了一种基于一对一SVM的模糊支持向量机,并将该方法应用到超光谱图像分类实验,结果表明该方法不仅改善了不可分区域的存在问题,而且比传统的SVM在分类精度上有明显的提高.
Support Vector Machine (SVM) has a good identification effect in HSI classification. However, the unclassifiable regions often exist in SVM-based classification with multi-classes included. Under this condition, this paper proposes an FSVM technique based on 1-a-1 SVM, and applies it to HSI classification. The results show that it not only reduces the existence of unclassifiable regions, but also gets better classification accuracy than the traditional SVM.
出处
《应用科技》
CAS
2007年第3期36-38,43,共4页
Applied Science and Technology
关键词
支持向量机
模糊支持向量机
模糊隶属度函数
超光谱图像分类
support vector machine
fuzzy support vector machine
fuzzy membership functions
hyperspectral image classification