期刊文献+

弯道水流的混合有限分析解 被引量:1

Hybrid finite analytic solutions to bend-flows
下载PDF
导出
摘要 建立了基于曲线拟合坐标系下的平面二维弯道水流数学模型,采用混合有限分析法进行了离散,对强弱弯曲河道矩形断面水流进行了数值计算.弱曲率弯道主流速度沿弯道外岸逐渐增加,在离心力作用下主流最大流速由凸岸逐渐向凹岸转移;且弯道水流的水面为一扭曲面,凹岸的水位线常形成上凸曲线,凸岸的水位线常形成下凹曲线.水面形态和流速重分布与相关文献实验结果符合良好,表明混合有限分析法与曲线拟合坐标的结合是一种可适用于弯道水流计算的有效格式. The depth-averaged 2-D mathematic model for bend-flow under orthogonal curvilinear coordinate system is proposed. The hybrid finite analytic method with non-staggered grid was applied to solve the flow in mildly and sharply curved channel. With centrifugal effect, there is a shift of the maximum main velocity along the mildly curved channel bend from the inner-bank region toward the outer-bank region, and the water level rises at the outer bank and falls at the inner bank. The experimental data and other numerical results are given to demonstrate the capabilities of the mathematical model. So the hybrid finite analytic method combined with orthogonal curvilinear coordinate system can satisfactorily simulate the variation of water surface pattern and redistribution of velocity in bend flow.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第2期96-97,100,共3页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(50479038 50679061)
关键词 混合有限分析法 平面二维浅水方程 弯道水流 hybrid finite analytic method shallow water equation bend flow
  • 相关文献

参考文献5

  • 1Leschziner M A,Rodi W.Calculation of strongly curved open channel flow[J].J Hydr Div ASCE,1979,105(10):1 297-1 314.
  • 2Lien H C,Hsieh T Y,Yang J C.Bend-flow simulation using 2D depth-averaged model[J].J Hydraul Eng ASCE,1999,105(10):1 097-1 108.
  • 3Jin Y C,Steffler P M.Predicting flow in curved open channels by depth-averaged method[J].J Hydraul Engrg,ASCE,1993,119(1):109-124.
  • 4Molls T,Chaudhry M H.Depth-averaged open-channel flow model[J].J Hydraul Engrg,1995,121(6):453-465.
  • 5Yeh K C,Kennedy J F.Moment model of nonuniform channel-bend flow.I:Fixed beds[J].J Hydraul Engrg,ASCE,1993,119(7):776-795.

同被引文献17

  • 1吴修广,沈永明,黄世昌.非正交曲线坐标下三维弯曲河流湍流数学模型[J].水力发电学报,2005,24(4):36-41. 被引量:11
  • 2孙东坡,朱岐武,张耀先,张晓松.弯道环流流速与泥沙横向输移研究[J].水科学进展,2006,17(1):61-66. 被引量:43
  • 3SUCCI S, CHEN H, ORSZAG S. Relaxation approximations and kinetic models of fluid turbulence[ J]. Physica A, 2006, 362: 1-5.
  • 4QIAN Y, DHUMIERES D, LALLEMAND P. Lattice BGK models for Navier-Stokes equation[J]. Europhysics Letters, 1992, 17:479-484.
  • 5LALLEMAND P, LUO L. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and sta- bility[ J]. Physical Review E, 2000, 61: 6546-6562.
  • 6HOU S, ZOU Q, CHEN S, et al. Simulation of cavity flow by the lattice Boltzmann method[ J]. Journal of Computational Physics, 1995, 118: 329-347.
  • 7DHUMIERES D, GINZBURG I, KRAFCZYK M, et al. Multiple-relaxation-time lattice Boltzmann models in three-dimensions[ J ]. Philosophical Transactions of the Royal Society of London A, 2002, 360: 437-451.
  • 8HE X, LUO L. Theory of lattice Bohzmann method: From the Bohzmann equation to the lattice Bohzmann equation[ J]. Physical Review E, 1997, 56(6): 6811-6817.
  • 9STERLING J D, CHEN S. Stability Analysis of lattice Bohzmann Methods[ J ]. Journal of Computational Physics, 1996, 123: 196- 206.
  • 10SUCCI S, AMATI G, BENZI R. Challenges in lattice Bohzmann computing[ J]. Journal of Statistical Physics, 1995, 81: 5-16.

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部