摘要
提出了一种改进的Otsu阈值分割方法,该算法结合了最小类内离散度与最大类间方差.类内方差越小,类的内聚性就越好,据此提出分类的类内离散测度,综合最大类间方差,定义了新的阈值识别函数.实验结果表明:该方法克服了传统Otsu阈值分割信息不完备的缺陷,具有更强的抗噪能力,分割效果明显.
An improved Otsu thresholding method is proposed which combines the minimum withincluster scatter with the maximum between-cluster variance. Cohesion performance of a cluster increases with decreasing of within-cluster variance. Thus, a new concept was given of scattered measure within clusters and a new threshold recognition function was integrated with the maximum between- cluster variance. Experimental results show that the proposed algorithm with resisting noise overcomes the disadvantage of incomplete information for traditional otsu thresholding segmentation and its segmentation effect is obvious.
出处
《华中科技大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2007年第2期101-103,共3页
Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金
湖北省自然科学基金资助项目(2004ABA217)
关键词
图像处理
二维直方图
图像分割
二维Otsu阈值分割
类内方差
类内离散度
image processing
two-dimensional histogram
image segmentation
two-dimensional Otsuadaptive thresholding segmentation
within-cluster variance
scattered measure withinclusters