期刊文献+

关于可加模糊集函数的一种分解 被引量:2

Decomposition for Additive Fuzzy Set Functions
下载PDF
导出
摘要 在经典测度论中,每个可加集函数可表示为两个测度之差,即将集函数表示为其上、下变差之差。本文将不交变差的定义推广到了模糊集上,运用三角基本模T∞和S∞算子表示模糊集合间的运算,T∞证明了有限可加模糊集函数在有界不交变差条件下的约当分解,推出了有界不交变差集函数的全不交变差的一种表示形式。 In the classical measure theory,every additive set function can be represented by the subtraction of its upper variation and lower variation.In this paper,the definition of disjoint variation is generalized to the fuzzy set functions. The fundamental t-norm T∞ and S∞ are considered as the operation of the fuzzy sets.A version of the Jordan decomposition theorem is proved for finitely T∞-additive functions with bounded disjoint variation.The form of the total disjoint variation for the functions with bounded disjoint variation is available.
出处 《河南科技大学学报(自然科学版)》 CAS 2007年第2期78-81,共4页 Journal of Henan University of Science And Technology:Natural Science
基金 河南科技大学科研基金项目(2006QN070)
关键词 不交变差 可加模糊集函数 T∞-tribe Disjoint variation Fuzzy set function T∞-tribe
  • 相关文献

参考文献10

  • 1Zadeh LA. Fuzzy Sets[J]. Inform Control,1965(8):338 - 353.
  • 2Sugeno M. Theory of Fuzzy Integrals and Its Applications[ D ]. Tokyo:Tokyo Institute of Technology, 1974.
  • 3Butnariu D. Additive Fuzzy Measures and Integral I [ J]. J Math Appl, 1983,93:436 -452.
  • 4Butnariu D. Fuzzy Measurability and Integrability [ J ]. J Math Appl, 1986,117:385 - 410.
  • 5Butnariu D. Additive Fuzzy Measures and Integral Ⅲ [ J]. J Math Appl, 1987,125:288 - 303.
  • 6Aumann R J, Shapley L S. Values of Non-Atomic Games [ M ]. Princeton : Princeton University Press, 1974.
  • 7Butnariu D, Klement E P. Triangular Norm Based Measures and Games with Fuzzy Coalitions [ M ]. Dordrecht: Kluwer Academic Publishers, 1993.
  • 8Qiang Zhang. Some Properties of the Variations of Non-additive Set Functions Ⅰ [ J]. Fuzzy Sets and Systems,2001,118:529 - 538.
  • 9Qiang Zhang. Some Properties of the Variations of Non-additive Set Functions Ⅱ [ J]. Fuzzy Sets and Systems,2001 , 121 :257 - 266.
  • 10Qiang Zhang,Chunqiao Tan. Variations of Set Functions on T-tribe[C]//Proceedings of 1 lth Conference on Information Processing and Management of Uncertainty in Knowledge-Based System. Paris, France ,2006:236 - 240.

同被引文献13

  • 1陈雯,张强.模糊合作对策的Shapley值[J].管理科学学报,2006,9(5):50-55. 被引量:45
  • 2Borkotokey S. Cooperative Games with Fuzzy Coalition and Fuzzy Characteristic Functions [ J]. Fuzzy Sets and Systems ,2008,159:138 - 151.
  • 3Yu X H ,Zhang Q. An Extention of Cooperative Fuzzy Games[ J] . Fuzzy Sets and Systems ,2010 ,161 (11) :1614 - 1634.
  • 4Li S J,Zhang Q. The Measure of Interaction among Players in Games with Fuzzy Coalitions[ J]. Fuzzy Sets and Systems,2008,159(2) :119 - 137.
  • 5Li S J, Zhang Q. A Simplified Expression of the Shapley Function for Fuzzy Game [ J]. European Journal of OperationalResearch,2009,196(1) :234 -245.
  • 6Yu X H,Zhang Q. The Fuzzy Core in Games with Fuzzy Coalitions [ J]. Journal of Computational and Applied Mathematics,2009,230(1) :173 - 186.
  • 7Meng F Y , Zhang Q. The Shapley Function for Fuzzy Cooperative Games with Multilinear Extetion Form [ J]. AppliedMathematics Letters,2010 ,23 :644 - 650.
  • 8Butnariu D , Klemen E P. Triangular Norm-based Measures and Games with Fuzzy Coalitions [ M]. Dordrecht: KluwerAcademic Publishers,1993.
  • 9Aumann R J, Shapley L S. Values of Non-atomic Games[ M]. New Jersey :Princeton University Press, 1974.
  • 10Aubin J P. Coeur et Valeur des Jeux Flous k Paiements Lateraux[ J]. Comptes Rendus Hebdomadaires des Stances de 1'Academie des Sciences, 1974 ,279-A : 891 -894.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部