期刊文献+

空化器参数对超空泡形成和发展的影响 被引量:32

INFLUENCE OF CAVITATOR PARAMETERS ON FORMATION AND DEVELOPMENT OF SUPERCAVITY
下载PDF
导出
摘要 为了探索超空泡的生成机理和形态变化规律,依据其产生方式,进行了自然超空泡高速射弹试验和通气超空泡水洞试验研究.分析了超空泡的生成过程和空化器参数对形成超空泡的临界空化数和通气系数门限值的影响.研究了超空泡形态尺寸变化的特性,空化器直径和线型对自然和通气超空泡的形态尺寸有相类似的影响规律:超空泡尺寸随着空化器直径的增加而增加;在相同条件下,钝头空化器要比圆锥形空化器更容易形成超空泡;相对较小的直径空化器很难形成透明的通气超空泡,其主要原因是自然空化数没有降到足够低.此外,研究表明空化器直径对通气超空泡的细长比的影响较大,这与对自然超空泡形态的影响不相同.最后,对空化器的未来研究发展进行了展望. Based on the way how to form supercavity, a series of projectile experiments and moderate-speed tunnel experiments were carried out to study the formation and development of the natural and ventilated supercavities in this paper. The processes of forming supercavities were recorded and discussed. The influence of cavitator parameters on the critical cavitation number and critical ventilation coefficient was analyzed. Qualitative features of the supercavity size change were obtained. It is shown that the cavitator diameter and coutour have a similar influence on the natural and ventilated supercavity sizes. Supercavity size increases with cavitator diameter and the formation of supercavity for a blunt cavitator is easier than for a cone cavitator under the same conditions. A cavitator of relatively small diameter might not be able to form a ventilated supercavity, mainly because the natural cavitation number is not small enough. Furthermore, the research shows that the cavitator diameter has an important effect on the fineness ratio of the ventilated supercavity, which is not the same as the natural supercavity. Finally, the perspective future research on cavitators is discussed.
出处 《力学学报》 EI CSCD 北大核心 2007年第2期210-216,共7页 Chinese Journal of Theoretical and Applied Mechanics
关键词 自然超空泡 通气超空泡 空化器参数 空化数 通气系数 射弹试验 水洞试验 natural supercavity, ventilated supercavity, cavitator parameter, cavitation number, ventilation coefficient, projectile experiment, tunnel experiment
  • 相关文献

参考文献9

  • 1Kuklinski Robert, Henoch Charles, Castano John. Experimental Study of Ventilated Cavities on Dynamic Test Model. Naval Undersea Warfare Center, Cav 2001: Session B3. 004
  • 2Vlasenko Yu D. Experimental investigation of supercavitation flow regimes of flow around self-propelled models.Prykladna Gidromekhanika, 2000, 2(74)(3): 26-39
  • 3Reichardt H. The laws if cavitation bubbles as axially symmetrical bodies in a flow. In: Ministry of Aircraft Producruin(Great Britian), Reports and Translations, 1946, 766:322-326
  • 4Kirschner IN, Gieseke TA, Kuklinski R, et al. Supercavition research and development. In: Undersea Defense Technologies Hawaii 2001, Waikiki, HI, October, 2001
  • 5Wosnik Margin, Schauer Travis J, Arndg Roger E.A. Experimental study a ventilated supercavitating vehicle. In:Fifth International Symposium on Cavitation (CAV2003).Osaka, Japan, 2003. 1-4
  • 6Savchenko Yu N. Control of supercavitation flow and stability of supercavitation motion of bodies. In: Paper Presented at the RTO AVT Lecture Series on "Supercavitating Flows", held at the von Karman Institute (VKI) in Brus-sels, Belgium, 12-16 February 2001, and published in RTO EN-010
  • 7Stinebring David R, Billet Michael L, Lindau Jules W, et al. Developed cavitation-cavity dynamics. In: Applied Research Laboratory PO Box 30 State College, PA 16804 USA
  • 8Kunz Robert F, Lindau Jules W, Billet Michael L, et al.Multiphase cfd modeling of developed and supercavitating flows. In: Applied Research Laboratory PO Box 30 State College, PA 16804 USA
  • 9Savchenko Yu N. Modeling the supercavitation processes. Prykladna Gidromekhanika, 2000, 274(3): 75-86

同被引文献296

引证文献32

二级引证文献152

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部