摘要
In this paper full polymer thin-film transistors (PTFTs) based on Poly (acrylonitrile) (PAN) as the gate dielectric and poly (2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene-vinylene) (MEH-PPV) as the semiconductor layer were investigated by using different channel width/length ratios. Relatively high dielectric constant of the polymer dielectric layer (6.27) can remarkably reduce the threshold voltage of the transistors to below -3V. Hole field-effect mobility of MEH-PPV of the PTFTs was about 4.8×10^-4cm^2/Vs, and on/off current ratio was larger than 10^2, which was comparable with that of transistors with widely used Poly (4-vinyl phenol) (PVP) or SiO2 as gate dielectrics.
In this paper full polymer thin-film transistors (PTFTs) based on Poly (acrylonitrile) (PAN) as the gate dielectric and poly (2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene-vinylene) (MEH-PPV) as the semiconductor layer were investigated by using different channel width/length ratios. Relatively high dielectric constant of the polymer dielectric layer (6.27) can remarkably reduce the threshold voltage of the transistors to below -3V. Hole field-effect mobility of MEH-PPV of the PTFTs was about 4.8×10^-4cm^2/Vs, and on/off current ratio was larger than 10^2, which was comparable with that of transistors with widely used Poly (4-vinyl phenol) (PVP) or SiO2 as gate dielectrics.
基金
Project support by the National "973" Project of China (Grant No 2002CB613405), the National Natural Science Foundation of China (Grant Nos 50573024, 50433030 and 20505020), the Key Project of Chinese Ministry of Education (Grant No 104208).