期刊文献+

相关反馈技术在图像检索系统中的应用 被引量:5

Application of Relevance Feedback Techniques in Content-Based Image Retrieval
下载PDF
导出
摘要 讨论了相关反馈的交互过程。分析了相关反馈中的学习问题及其特点。根据相关反馈算法所采用的检索模型把算法分为查询点移动、权系数调整、基于传统的统计学习理论和基于机器学习理论。并据此分类对近年具来有代表性的一些算法进行了分析和探讨。 This paper discusses the interactive process, and analyzes the learning problems and characteristics of relevance feedback. Based on the retrieval model adopted in the algorithm, relevance feedback algorithms are categorized into four classes, such as distance-based approach, probabilistic approach, tradition-based learning approach and machine-based learning approach. Finally, various representative algorithms are discussed according to this categorization.
作者 马超 唐治德
机构地区 重庆大学
出处 《重庆科技学院学报(自然科学版)》 CAS 2007年第1期81-84,共4页 Journal of Chongqing University of Science and Technology:Natural Sciences Edition
关键词 相关反馈 图像检索 交互式 relevance feedback image retrieval(IR) interactive
  • 相关文献

参考文献15

  • 1Huang J, Kumar S R, Mitra M. Combining Supervised Learning with Color Correlograms for Content-based Image Retrieval [M]. ACM Multimedia Conference, 1997, (2):325-334.
  • 2Jing F , Li M J, Zhang B. An Effective Region-based Image Retrieval Framework [J]. ACM Multimedia, Juan-les-Pins,2002(1):456-465.
  • 3Picard R, Minka T P, Szummer M. Modeling User Subjectivity in Image Libraries[J]. International Conference on Image Processing, 1996(6):777-780.
  • 4Rui Y, Huang T S, Mehrotra S. Relevance Feedback: a Powerful Tool in Interactive Content-based Image Retrieval[J]. IEEE Trans, 1998,8(5):644-655.
  • 5Rui Y,Huang T S, Mehrotra S, Ortega M. Automatic Matching Tool Selection Via Relevance Feedback in MARS[Z]. The 2nd International Conference on Visual Information Systems,1997:109-116.
  • 6Scalaroff S, Taycher L, Cascia M La. Imageover: A Content-based Image Browser for the World Wide Web[Z].IEEE Workshop on Content-Based Access to Image and Video Libraries, 1997:2-9.
  • 7Rui Y, SHuang T. Optimizing Learning in Image Retrieval[J]. IEEE Conf. On CVPR, 2000:212-219.
  • 8Cox I. J, Miler M.L, Minka T.P, et al. The Bayesian Image Retrieval System, PicHunter: Theory, Implementation and Psychophysical Experiments [J]. IEEE Trans. On Image Processing,2000, 9(1):20-27.
  • 9Vailaya A. Semantic Classification in Image Databases [Z].Ph.D thesis,2000.
  • 10Wu Y, Huang T S. Discriminant-EM Algorithm with Application to Image Retrieval [J]. Proc. IEEE Conf.Computer Vision and Pattern Recognition, 2000:230-256.

同被引文献37

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部