期刊文献+

支持向量机在空间信息处理领域的应用研究 被引量:6

The application and research progress of SVM in spatial information processing
下载PDF
导出
摘要 支持向量机作为一种最新的也是最有效的统计学习方法,近年来成为模式识别与机器学习领域一个新的研究热点。支持向量机具有小样本学习、抗噪声性能好、学习效率高和推广性好的优点,能够用于空间信息处理分析领域的遥感影像处理、高光谱分类、拟合与回归、数据挖掘、目标检测等任务。本文在总结分析近年来支持向量机在空间信息处理领域应用主要进展与成果的基础上,结合支持向量机理论方法与空间信息处理的发展趋势,提出了今后有必要重点研究的若干问题,包括空间数据挖掘、智能空间信息处理、高维空间数据处理等。 As one of the most popular and effective statistical learning algorithm,Support Vector Machine(SVM)has become a new hot topic in pattern recognition and machine learning fields in recent years.SVM has some advantages,for example,its applicability to limited samples,robustness to noises,high learning efficiency and easy generalization,and those are commonly difficult issues in spatial information processing.So SVM can be used to spatial information processing,and some major applications include RS image processing,hyper-spectral RS data classification,spatial approximation and regression,data mining,target identification,and so on.Based on a brief introduction and summary to the achievements of SVM used to spatial information processing,some potential applications,including spatial data mining,intelligent spatial information process and high-dimensional spatial data processing are discussed in detail.
出处 《测绘科学》 CSCD 北大核心 2007年第2期87-89,94,共4页 Science of Surveying and Mapping
基金 国家自然科学基金项目(40401038) 测绘遥感信息工程国家重点实验开放基金项目(2004重点项目第三子课题) 中国矿业大学科学基金资助项目(D200403)
关键词 支持向量机(SVM) 空间信息处理 遥感影像处理 support vector machine(SVM) spatial information processing RS image processing
  • 相关文献

参考文献16

二级参考文献77

  • 1朱述龙.纹理图像统计模型与纹理图像分割[J].测绘学报,1995,24(2):60-66. 被引量:3
  • 2黄桂兰,郑肇葆.分形几何在影像纹理分类中的应用[J].测绘学报,1995,24(4):283-291. 被引量:24
  • 3徐芳.航空影像纹理特征的分析[J].武汉大学学报:信息科学版,2002,27:126-128.
  • 4Chalabi Z S, Bailey B J, Wilkinson D J. A real-time optimal control, algorithm for greenhouse heating. Computers and Electronics in Agriculture, 1996, 15: 1~13
  • 5Arvanitis K G, Paraskevopoulos P N, Vernardos A A. Mutirate adaptive temperature control of greenhouses. Computers and Electronics in Agriculture, 2003,3:303~320
  • 6Tap R F. Economics-based optimal control of greenhouse tomato crop production: [PhD thesis]. Wageningen Agricultural University,1998.
  • 7Pohlheim H, Heibner A. Optimal control of greenhouse climate using genetic algorithms. 2nd International Conference Algorithms. Technical University of Brno, Czech Republik, 1996.
  • 8Vapnik V. The nature of statistical learning theory. New York: Springer Press, 1999.
  • 9Müller K R, Smola A J, Rtsch G, et al. Predicting time series with support vector machines. In: Gerstner W, Germond A, Hasler M, et al, eds. Proc. of-ICANN'97, Springer Lecture Notes in Computer Science. New York: Springer Press, 1997. 999~1004
  • 10Boser B E, Guyon I M, Vapnik V N. A training algorithm for optimal margin classifiers. In: Haussler D, ed. 5th Annual ACM Workshop on COLT. Pittsburgh: Association for Computer Machinery Press,1992.144~152

共引文献2633

同被引文献99

引证文献6

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部