期刊文献+

一类单极等熵流体动力学半导体模型的松弛极限

Relaxation Limit of a Unipolar Isentropic Hydrodynamic Model for Semiconductors
下载PDF
导出
摘要 对一类有短的动量松弛时间的多维等熵流体动力学半导体模型的极限问题进行了讨论.首先构造非线性问题的有初始层的近似解,进而,在归结问题的解存在且有合适的正则性的假设下,证明了原非线性问题的局部古典解的存在性,并且证明了这个解在归结问题解的存在时间区间内收敛到形式近似解. This note is concerned with the unipolar isentropic hydrodynamical models for semiconductors with short momentum relaxation time in serval space variables. The author first constructs formal approximations of the initial layer solution to the nonlinear problem. Furthermore, assuming some regularity of the solution to the reduced problem, and proves the existence of classical solutions in the uniform time interval where the reduced problem has a smooth solution and justify the validity of the formal approximations in any fixed compact subset of the uniform time interval.
作者 黎野平
出处 《数学年刊(A辑)》 CSCD 北大核心 2007年第1期1-16,共16页 Chinese Annals of Mathematics
基金 中国博士后基金(No.2005037481)资助的项目
关键词 松弛极限 内问题 归结问题 H^S-解 能量估计 Relaxation limit, Inner problem, Reduced problem, H^S-solution, Energy estimates
  • 相关文献

参考文献23

  • 1Chen G.Q.and Liu T.P,Zero relaxation and dissipation limits for hyperbolic conservation laws[J],Comm.Pure Appl.Math,1993,46(6):755-781.
  • 2Chen G.Q,Levermone C.S.and Liu T.P,Hyperbolic conservation laws with stiff relaxation terms and entropic[J],Comm.Pure Appl.Math,1994,47(6):787-830.
  • 3Degond P.and Markowich P.A,On a one-dimensional steady-state hydrodynamic model for semiconductors[J],Appl.Math.Letters,1990,3(1):25-29.
  • 4Eckhaus W,Matching Principles and Composite Expansions[M],Berlin:SpringerVerlag,1997.
  • 5Grenier E,Pseudo-differential energy estimates of singular perturbations[J],Comm.Pure Appl.Math,1997,50(6):821-865.
  • 6Gamba I.M,Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductors[J],Comm.Partial Differential Equations,1992,17(3-4):553-577.
  • 7Jungel A,Quasi-hydrodynamic Semiconductor Equations[M],Switzerland:Birhüser Verlag,2001.
  • 8Hsiao L.and Zhang K.J,The relaxation of the hydrodynamic model for semiconductors to the drift-diffusion equations[J],J.Differential Equations,2000,165(2):315-354.
  • 9Junca S.and Rascle M,Relaxation of the isothermal Euler-Poisson system to the drift-diffusions[J],Quart.Appl.Math,2000,LV3:511-522.
  • 10Luo T,Natalini R.and Xin Z,Large time behavior of the solutions to a hydrodynamic model for semiconductors[J],SIAM J.Appl.Math,1998,59(3):810-830.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部