期刊文献+

基于属性归纳的中药方剂数据挖掘 被引量:6

Traditional Chinese Medicine prescription mining based on attribute-oriented relevancy induction
下载PDF
导出
摘要 传统的面向属性归纳技术(AOI)存在概化粗糙及算法效率较低等缺陷。为适应中药方剂数据挖掘的复杂需求,提出基于中药数据驱动的属性关联概化算法;为关联的维度创建概念树,利用关联属性与基准属性的相关性以提高归纳的效率,实现了面向属性关联归纳的数据挖掘系统TCMDBMiner。实验结果表明,新算法较传统算法的归纳概化效率提高了23%以上,挖掘结果符合中医理论。 The traditional Attribute-Oriented Induction (AOI) technique is weak at efficiency and coarseness of generalization. In order to satisfy the complex requirements in Chinese medicine prescript/on mining, this study proposed a new algorithm based on attribute relevancy generalizing driven by Chinese medicine data, established concept-tree for relevancy-dimension, utilized pertinence of relevancy-attribute and benchmark-attribute to enhance efficiency of induction, and implemented a new data mining system TCMDBMiner based on attribute-oriented relevancy induction. Experimental results show that new algorithm is 23% faster than traditional method and the mining results are consistent with the Chinese medicine theory.
出处 《计算机应用》 CSCD 北大核心 2007年第2期449-452,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(60473071 90409007) 高等学校博士学科点专项科研基金资助项目(20020610007) 四川省科技攻关项目(2006Z01-027)
关键词 面向属性归纳 概念树 关联属性闽值 中医药数据挖掘 Attribute-Oriented Induction (AOI) concept tree threshold of relevancy attribute data mining of Chinese medicine
  • 相关文献

参考文献8

二级参考文献38

  • 1[1]Anderbdrg M R.Cluster Analysis for Application.No.19 in Probability and Mathematical Statistics.New York,USA,Academic Press,1973
  • 2[2]Fisher D,Langley P.Approaches to Conceptual Clustering .Los Angeles ,CA,USA:In Proc.of 9th Int'l Joint Conf.on Artificial Intellgence,1985-08:691-697
  • 3[3]Han,J,Cai Y,Cercone N.Concept-based data Classification in Relational Database.Anaheim,CA,USA:In Workshop Notes of 1991 AAAI Workshop on Knokledge Discovery in Database(KDD'91),1991-07:77-94
  • 4[4]Han J,Cai Y,Cercone N.Knowledge Disvivery in Databased:An Attribute-oriented Approach.Vancouver,British Columbia,Canada:In Proc.of the 18th VLDB Conference,1992:54-559
  • 5[5]Pitt L,Reinke E.Criteria for Polynomial-time(conceptual)Clustering .Machine Leaning,1998,2(4):371-396
  • 6韩渊丰.区域地理理论与方法[M].北京:高等教育出版社,1992.102-103.
  • 7朱明.数据挖掘[M].合肥:中国科学技术大学出版社,1999.53-80.
  • 8Carter C L, Hamilton H J. Performance Evaluation of Attribute-Oriented Algorithms for Knowledge Discovery from Database[ R].Dept of Computer Science, University of Regina, SK, Canada: 1995. 486-489.
  • 9Sun J P, Bi W Y. Directed Acyclic Concept Graph Based Attribute Oriented Induction[ R]. Graduate School of Computer and Information Sciences, Nova Southeastern University, Fort Lauderdale, FL. 2001. 32-45.
  • 10Cheng D, Hwang H Y , Han J W. Efficient rule-based attribute-oriented induction for data mining[J]. Journal of Intelligent Information Systems, 2000, 15: 175-200.

共引文献13

同被引文献153

引证文献6

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部