期刊文献+

一种SVM与区域生长相结合的图像分割方法 被引量:8

Interactive segmentation method with SVM and region growing
下载PDF
导出
摘要 作为一种全局门限处理方法,支持向量机图像分割方法不能完成对图像进行精细分割,其分割结果需要其他分割方法进一步处理。提出一种结合支持向量机和区域生长的交互式分割方法,不仅可有效剔除与感兴趣区域特征类似的非目标区域,而且把为SVM选择训练样本和为区域生长选择种子点两个步骤合二为一,从而提高了图像分割质量和交互式分割方法的自动分割能力。 The SVM segmentation method, as a kind of global thresholding, cannot segment the image finely. The results need to be post-processed by other segmentation approaches. In this paper, a new interactive segmentation method was proposed, which integrated the SVM and region growing. The proposed method can remove the regions of non-interest that have similar characteristics to regions of interest. Furthermore, it can combine the two procedures into one: the procedure of selecting samples for training SVM and the procedure of selecting seeds for region growing. As a result, the method improves the quality of segmentation and the performance of auto-segmentation.
出处 《计算机应用》 CSCD 北大核心 2007年第2期463-465,共3页 journal of Computer Applications
基金 中国教育科研网格计划ChinaGrid 图像处理网格应用平台建设专题项目(CG2003-GA00102)
关键词 支持向量机 区域生长 图像分割 虚拟人 Support Vector Machines (SVM) region growing image segmentation virtual human
  • 相关文献

参考文献2

二级参考文献23

  • 1屈颖歌,周涛,王平安,夏德深.基于支持向量机的核磁共振左心室图像自动检测与分割[J].武汉大学学报(理学版),2003,49(6):769-774. 被引量:5
  • 2Andreas Pommert,Karl Heinz Hohne,et al.Creating a High-resolution Spatial/Symbolic Model of the Inner Organs Based on the Visible Human[J].Medical Image Analysis,2001,5:221-228.
  • 3Thomas Schiemann,Ulf Tiede,Karl Heinz Hohne.Segmentation of the Visible Human for High-quality Volume-based Visualization[J].Medical Image Analysis,1997,1(4):263-270
  • 4Fang XU,Xin LI,Qin YAN.Aerial Images Segmentation Based on SVM[C].Proceedings of the 2nd International Conference on Machine Learning and Sybernetics,Xi'an,2003.2207-2210.
  • 5Constantine Kotropoulos,Ioannis Pitas.Segmentation of Ultrasonic Images Using Support Vector Machines[J].Pattern Recognition,2003,24:715-727.
  • 6S Sathiya Keerthi,Chih-Jen Lin.Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel[J].Neural Computation,2003,15:1667-1689.
  • 7Hsuan-Tien Lin,Chih-Jen Lin.A Study on Sigmoid Kernels for SVM and the Training of Non-PSD Kernels by SMO-type Methods[EB/OL].http://www.csie.ntu.edu.tw/~cjlin/papers/ tanh.pdf,2005-01-12.
  • 8罗惠韬,章毓晋.一个图象分割评价实例及讨论[J].数据采集与处理,1997,12(1):18-22. 被引量:21
  • 9张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2279
  • 10钟世镇,原林,黄文华.数字化虚拟人体为临床解剖学开拓研究新领域[J].中国临床解剖学杂志,2002,20(1):3-4. 被引量:72

共引文献78

同被引文献70

引证文献8

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部