期刊文献+

一种基于局部方差的雾天图像增强方法 被引量:45

Algorithm based on local variance to enhance contrast of fog-degraded image
下载PDF
导出
摘要 提出了一种基于图像局部方差的保持灰度级和亮度的雾天图像增强算法。即在对图像作局部处理的基础上,利用局部方差可以较好的体现图像细节信息的特性,通过计算并比较图像局部标准方差的大小来判断局部图像的增强程度,然后以灰度均值为基准进行局部灰度拉伸。该算法可以有效增强和保留图像细节,克服了传统直方图均衡化处理所造成的灰度级损失的缺点,保持了原图的灰度级和平均亮度,较好的抑制了噪声,图像视觉效果明显改善,因此特别适合于深度信息多变且对比度较低的雾天图像。实验结果表明该算法可以有效的增强雾天图像。 This paper presented an image contrast enhancement method based on local variance that can preserve brightness and gray levels. Because of the characteristic that local variance can show the detail of image, a method of contrast enhancement through local variance comparison to judge enhancement degree was proposed. It can not only enhance the image contrast and hold the details simultaneously, prevent gray levels losing, but also keep the contrast, brightness of the original image and suppress noise. Thus it is especially adapted to the fog-degraded images with scene depth variations. Experimental results show that the proposed algorithm is effective.
作者 詹翔 周焰
出处 《计算机应用》 CSCD 北大核心 2007年第2期510-512,共3页 journal of Computer Applications
关键词 局部方差 对比度增强 雾天图像 local variance contrast enhancement fog-degraded images
  • 相关文献

参考文献11

  • 1NARASIMHAN SG,NAYAR SK.Contrast Restoration of Weather Degraded Images[J].IEEE Transactions On Pattern Analysis And Machine Intellgence,2003,25 (6):713-723.
  • 2王萍,张春,罗颖昕.一种雾天图像低对比度增强的快速算法[J].计算机应用,2006,26(1):152-153. 被引量:62
  • 3曹聚亮,吕海宝,李冠章.基于自适应局部灰度修正的直方图均衡算法[J].红外与激光工程,2004,33(5):513-515. 被引量:25
  • 4CHANG D-C,WU W-R.Image Contrast Enhancement Based on a Histogram Transformation of Local Standard Deviation[J].IEEE transactions on medical imaging,1998,17(4):518 -531.
  • 5OAKLEY JP,SATHERLEY BL.Improving Image Quality in Poor Visibility Conditions Using a Physical Model for Degradation[J].IEEE Trans.Image Processing,1998,7(2):167 -179.
  • 6KOPEIKA NS.A System Engineering Approach to Imaging[M].SPIE Press,1998.
  • 7GONZALEZ RC,WOODS RE.Digital image processing[Z].New York:Addison-Wesley,1992.
  • 8WANG C,YE Z.Brightness Preserving Histogram Equalization with Maximum Entropy:A Variational Perspective[J].IEEE Transactions on Consumer Electronics,2005,51 (4):1326-1334.
  • 9沈嘉励,张宇,王秀坛.一种夜视图象处理的新算法[J].中国图象图形学报(A辑),2000,5(6):479-483. 被引量:13
  • 10周宏潮,王正明,赵敏.基于全局信息的图像增强组合方法[J].数据采集与处理,2005,20(4):432-435. 被引量:1

二级参考文献31

  • 11,William K. Pratt. Digital image processing. New York: Wiley,1991.
  • 22,Yeong-Taeg Kim. Contrast Enhancement Using Brightness Preserving Bihistogram Equalization. IEEE Transactions on Consumer Electronics,1997,43(1):1~8.
  • 3Pizer S. Adaptive histogram equalization and its variations[J]. CVGIP, 1987,39(3):355-368.
  • 4Paranjape R B. Adaptive-neighborhood histogram equalization for image enhancement [J].CVGIP, 1992,54(3):259-267.
  • 5Lee Jongsan. Digital image enhancement and noise filtering by using of local statistics[J]. PAMI-I,1980,2(2):165-168.
  • 6You Y L, Kaveh M. Fourth-order partial differential equations for noise removal[J]. IEEE Trans Image Processing, 2000, 9(10):1723~1730.
  • 7Greenspan H, Anderson C H, Akber S. Image enhancement by nonlinear extrapolations in frequency space[J]. IEEE Trans Image Processing, 2000, 9(6):1035~1048.
  • 8Sakellaropoulos P, Costaridou L, Panayiotakis G. A wavelet-based spatially adaptive method for mammographic contrast enhancement[J]. Physics in Medicine Biology, 2003, 48(6):783~803.
  • 9Sapiro G, Caselles V. Histogram modifications via differential equations[J]. Journal of Differential Equations, 1997,135(2):238~268.
  • 10Gilboa G Y, Zeevi N A S. Forward and backward diffusion processes for adaptive image enhancement and denosing[J]. IEEE Trans Image Processing, 2002,11(7):689~703.

共引文献96

同被引文献402

引证文献45

二级引证文献306

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部