期刊文献+

烧成温度对可控多孔生物陶瓷制备技术的影响 被引量:1

Effect of sintering temperature on the controllable preparation technique of porous bioceramics
下载PDF
导出
摘要 目的:观察烧成温度对多孔生物陶瓷制品孔结构、显气孔率与容重、水渗透率、收缩率以及压缩强度的影响。方法:实验于2002-09/2005-09在武汉理工大学生物中心和重庆邮电大学生物实验中心完成。采用可控多孔生物陶瓷制备技术,改变烧成温度,其他因素(如成型工艺、升温速度和保温时间等)不变,分别制得不同的样品;用电子扫描显微镜观察孔道和表面形貌;根据GB/T1964~1967-1996和GB/T1969~1970-1996测量显气孔率、容重;用自制水渗透率测定仪测定水渗透率;用体积法测定收缩率。用ASTM材料强度测试机测定压缩强度。结果:①烧成温度对孔结构的影响:在900℃以内时烧成温度的变化对大孔的影响不明显,仍然在500μm左右,但当烧成温度增加到1000℃,大孔变小到400μm左右。烧成温度的变化对小孔的影响比较明显,小孔明显增大,当烧成温度800℃增加到1000℃时,小孔从10μm左右增大到20~30μm左右。烧成温度的变化对微孔的影响也比较明显,小孔明显增大,当烧成温度800℃增加到1000℃时,小孔从4μm左右增大到6μm左右。②烧成温度对显气孔率及容重的影响:随着烧成温度的提高,样品的显气孔率下降幅度增大,容重的增加幅度增大。③烧成温度对水渗透率的影响:随着烧成温度的提高,样品的水渗透率下降幅度增大,容重的增加幅度增大。④不同烧成温度对收缩率的影响:随着烧成温度的提高,样品的收缩率增大。⑤烧成温度对压缩强度的影响:随着烧成温度的提高,压缩强度增大。而在800℃以后继续升温,压缩强度急剧增大。结论:烧成温度对孔结构、显气孔率与容重、水渗透率、收缩率以及压缩强度有着重要的影响,为了保证成品有较好的孔结构、较高的显气孔率的同时具有一定的机械强度,烧成温度选择在850℃左右较佳。 AIM: To observe the influences of sintering temperature on bore construction, apparent porosity and volume weight, the pervasion rate of water, contracted rate and compress strength of porous bioceramics. METHODS:The experiment was conducted in the Biomedical Materials and Engineering Center, Wuhan University of Technology and Biological Experimental Center, Chongqing University of Posts and Telecommunication between September 2002 and September 2005. Different samples were made by controllable preparation technique when the sintering temperature was changed and other factors such as shaping craft, temperature raise speed and incubation time; the hole path and surface were observed by scanning electron microscope; apparent pore rate and volume weight ware measured according to GB/T1964-1967-1996 and GB/T1969-1970-1996 standard, and the pervasion rate of water was tested with self-designed instrument; the contracted rate was tested by volumetric method; the compress strength was tested by ASTM strength test instrument. RESULTS: (1) Effect of sintering temperature on the bore construction: Sintering temperature below 900 ℃ had inconspicuous influence on the big bore, which remained 500 μm , but it had conspicuous influence on big bore when it was above 900 ℃, and the bore was decreased to 400 μm. The changes in sintering temperature had a great influence on eyelets, which was significantly enlarged from 10 μm to 20-30 μm when the temperature was raised from 800 ℃ to 1 000 ℃; and the microhores were increased from 4 μm to 6 μm when the temperature was raised from 800 ℃ to 1 000 ℃. (2)Influence of sintering temperature on apparent pore rate and volume weight: With the sintering temperature raised, the apparent pore rate descended, and volume weight increased significantly. (3)Influence of sintering temperature on the pervasion rate of water: The rate was reduced with the increase of temperature, and volume weight increased significantly. (4)Effect of sintering temperature on the contracted rate: The contracted rate was increased with the raise of temperature. (5)Effect of sintering temperature on the compress strength: The strength raised with temperature and sharply increased when the temperature was above 800℃. CONCLUSION:Sintering temperature has important influence on bore structure, apparent pore rate, volume weight, the pervasion rate of water, contracted rate and compress strength. To guarantee that products have better bore structure, and higher apparent pore rate and mechanical strength, the sintering temperature is better to control around 850℃.
出处 《中国组织工程研究与临床康复》 CAS CSCD 北大核心 2007年第9期1683-1685,共3页 Journal of Clinical Rehabilitative Tissue Engineering Research
基金 国家"八六三"计划(2002AA36080)~~
  • 相关文献

参考文献3

  • 1陈晓明 曾垂省.有机泡沫微球作为成孔剂的热压铸多孔陶瓷的制备方法[P].中国专利:ZL03128065.X.2004—11-3.
  • 2曾垂省,陈晓明,闫玉华,高玉香,魏连启.多孔生物陶瓷的制备与成形技术及发展趋势[J].山东陶瓷,2004,27(2):19-21. 被引量:4
  • 3罗民华.莫来石纤维多孔陶瓷的制备,结构表征及性能研究[D].广州:华南理工大学,2003

二级参考文献9

  • 1朱时珍,赵振波,刘庆国.多孔陶瓷材料的制备技术[J].材料科学与工程,1996,14(3):33-39. 被引量:78
  • 2Schwartzwalder, A. V. Somers. United States Patent, US 3,090,094. (1963).
  • 3Pilar Sepulveda. [J]. Am cerasm Soc Bull, 1997,76(9) :61:65.
  • 4Hirschfeld DA, LiuDM. [J]. Key Engeering Materials, 1995, 115:65.
  • 5李世普.生物医用材料学[M].武汉工业大学出版社,2000,8..
  • 6Schwartzwalder, A. V. Somers. United States Patent, US 3,090,094.(1963)
  • 7PilarSepulveda. [J]. AmcerasmSocBull, 1997,76(9):61:65
  • 8Hirschfeld D A, Liu D M. [J]. KeyEngeefing Materials, 1995,115:65
  • 9朱新文,江东亮.有机泡沫浸渍工艺——一种经济实用的多孔陶瓷制备工艺[J].硅酸盐通报,2000,19(3):45-51. 被引量:83

共引文献7

同被引文献15

  • 1张士华,熊党生.β-磷酸三钙多孔生物陶瓷的制备与表征[J].南京理工大学学报,2005,29(2):231-235. 被引量:12
  • 2王圣威,金宗哲,黄丽容.多孔陶瓷材料的制备及应用研究进展[J].硅酸盐通报,2006,25(4):124-129. 被引量:29
  • 3刘爱红,李爱民,孙康宁.多孔HAp-(β-Ca_3(PO_4)_2)-Si_3N_4生物复合材料的力学性能与微观结构[J].材料工程,2007,35(10):14-17. 被引量:2
  • 4Pilliar R M,Filiaggi M J,Wells J D,et al. Porous calci- um polyphosphate scaffolds for bone substitute appli- cation-in vitro characterization [J].Biomaterials, 2001, 22(9) :963-972.
  • 5Rabiee S M, Moztarzadeh F, Salimi-Kenari H, et al. Study of biodegradable ceramic bone graft substitute [J]. Ad- vances in Applied Ceramics, 2008,107 (4) : 199-202.
  • 6Kivrak N,Tas A C. Synthesis of calcium hydroxyapa-tire tricalcium phosphate (HA-TCP) composite bioee- ramic powders and their sintering behavior [J].J. Am Ceram. Soc. ,1998,81(9) : 2245-2252.
  • 7Chung-King H. The preparation of biphasie porous cal- cium phosphate by the mixture of Ca(H2 PO4 )z ~ H20 and CaCOa [J].Materials Chemistry and Physics, 2003,80 : 409-420.
  • 8Hassna R R, Ramay, Zhang M. Biphasie calcium phos- phate nanoeomposite porous scaffolds for load-bearing bone tissue engineering [J].Biornaterials, 2004,25 (1) : 5171-5180.
  • 9Carrodeguas R G,De Aza S. ~-Tricaleium phosphate: Synthesis, properties and biomedical applications [J]. Acta Biomaterialia, 2011,7(10) :3536-3546.
  • 10Ryu H S, Youn H J,Hong K S, et al. An improve- ment in sintering property of b-tricalcium phosphateby addition of calcium pyrophosphate [J], Biomateri- als, 2002,23 (3) : 909-914.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部