摘要
基于变量之间基本依赖关系、基本结构、d-separation标准、依赖分析思想和混合定向策略,给出了一种有效实用的贝叶斯网络结构学习方法,不需要结点有序,并能避免打分-搜索方法存在的指数复杂性,以及现有依赖分析方法的大量高维条件概率计算等问题。
A new method of learning Bayesian network structure based on basic dependency relationship between variables,basic structure between nodes,d-separation criterion,the idea of dependency analysis and the strategy of mixture orienting is given.This method do not need sorting nodes.h can effectively avoid the exponential complexity of search & scoring based methods and a large number of the calculate of high rank conditional probability in existing dependency analysis based methods.
出处
《计算机工程与应用》
CSCD
北大核心
2007年第8期29-31,共3页
Computer Engineering and Applications
基金
国家自然科学基金(the National Natural Science Foundation of China under Grant No.60675036)
上海市重点学科(No.P1601)
上海市教委重点项目(No.05zz66)
关键词
贝叶斯网络
结构学习
依赖分析
因果语义
碰撞识别
Bayesian networks
structure learning
dependency analysis
causal semanitics
collider identification