期刊文献+

加权编码遗传算法线性函数能力分析 被引量:1

On limitation of linear-weighted-coded genetic algorithms in the optimication of linear functions
下载PDF
导出
摘要 引入基因座系数作为基因座上一阶模式适应度差别的衡量指标;通过基因座系数和一阶积木块的对应关系,分析了线性加权编码用于线性函数编码时生成一阶积木块的能力。分析结果给出了基因座系数的一个上限与加权值的关系,结果同时表明,为保证计算精度,无论加权值如何变化,总有部分基因座上的基因座系数接近于1,因此在相当部分的搜索子空间中搜索随机性强、效率低。 In this paper,a concept of locus factor is introduced to measure the fitness differences among/between the order-1 schemata at a certain locus.According to the relationship between locus factor and order-1 building block,the ability of the linear-weighted coding employed to a linear fitness function to generate order-1 building blocks is analyzed.An upper limit of the locus factor at a particular locus in terms of the weights is given.The results show that,in order to guarantee the calculation accuracy,there always exist loci at which locus factors are very close to 1,not matter what the weights are.As a result,the local search efficiency of the linear-weighted-encoded genetic algorithms employed to a linear function is unavoidably low.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第8期85-87,共3页 Computer Engineering and Applications
基金 教育部回国人员科研启动基金(The Project-sponsored by SRF for ROCS SEM)
关键词 遗传算法 局部搜索 编码 GA-难 Genetic Algorithms local search coding GA-hard
  • 相关文献

参考文献11

  • 1Sheng W,Swift S,Zhang L,et al.A weighted sum validity function for clustering with a hybrid niching genetic algorithm[J].IEEE Trans Systems,Man and Cybernetics:Part B,2005(99):1156-1167.
  • 2Lee C Y.Entropy-Boltzmann selection in the genetic algorithms[J].IEEE Trans Systems,Man and Cybernetics:Part B,2003,33 (1):138-149.
  • 3Srinivas M,Patnaik L M.Adaptive probabilities of crossover and mutation in genetic algorithms[J].IEEE Trans Systems,Man and Cybernetics,1994,24 (4):656-667.
  • 4Beveridge J R,Balasubramaniam K,Whitley D.Matching horizon features using a messy genetic algorithm[J].Computer Methods in Applied Mechanics and Engineering,2000,186(2):499-516.
  • 5Renders J M,Flasse S P.Hybrid methods using genetic algorithms for global optimization[J].IEEE Trans Systems,Man and Cybernetics,1996,26(2):243-258.
  • 6Kuo T,Hwang S Y.Why DGAs work well on GA-hard functions?[J].New Generation Computing,1996,14(4):459-479.
  • 7Wilson S W.GA-easy does not imply steepest-ascent optimizable[C]//Proceedings of the Fourth International Conference on Genetic Algorithms and Their Applications.San Mateo,CA:Morgan Kaufmann,1991:85-89.
  • 8Kuo T,Hwang S Y.Genetic algorithm with disruptive selection[J].IEEE Trans Systems,Man and Cybernetics:Part B,1996,26(2):299-307.
  • 9Goldberg D E.Genetic algorithms in search,optimization and machine learning[M].Reading,MA:Addison Wesley,1989.
  • 10刘勇.非数值并行计算方法一遗传算法[M].北京:科学出版社,1993.

二级参考文献2

  • 1刘勇.非数值并行计算方法-遗传算法[M].科学出版社,1993..
  • 2董延恺.基础集合论[M].北京:北京师范大学出版社,1988..

同被引文献14

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部