摘要
本文在具有仅满足增长性条件测度μ的非齐性空间上引入了弱H erz空间,并讨论了某些次线性算子在该空间上的有界性;特别的,我们得到了分数次积分算子的有界性.
Let μ be a Radon measure on R^d satisfying just a mild growth condition,namely that the measure of each ball is controlled by a fixed power of its radius. The main purpose of this paper is to consider the houndedness of a class of suhlinear operators on weak Herz space with non-doubling measures. As special cases ,we obtain the houndedness of fractional operators.
出处
《新疆大学学报(自然科学版)》
CAS
2007年第1期31-34,共4页
Journal of Xinjiang University(Natural Science Edition)
基金
Project 10261007 supported by NSFC.