期刊文献+

肝脏FDG代谢模型的参数估计 被引量:6

Kinetic model parameter estimates of liver FDG metabolism
原文传递
导出
摘要 利用房室模型进行肝脏[18F]氟代脱氧葡萄糖([18F]2-fluoro-2-deoxy-D-glucose,FDG)代谢的动力学研究是进行人体功能信息的建模和研究肝脏葡萄糖代谢率的重要手段。动力学研究需要得到血液中的示踪剂浓度随时间变化曲线,将其作为模型的输入,估计出肝脏FDG代谢模型的动力学参数。然而,肝脏存在肝动脉输入和肝门静脉输入。研究分别采用动脉和门静脉的双输入方式和动脉的单输入方式作为血液输入曲线,用这两个输入函数分别进行了肝脏FDG代谢的动力学研究,比较了用两种方法所得到的结果。结果显示,在人体肝脏的FDG代谢研究中,用两种输入曲线得到的结果存在明显的不同,并且用双输入曲线得到的结果更加准确。 Liver kinetic studies of [^18F]2-fluoro-2-deoxy D-glucose (FDG) metabolism are important tools for functional information modeling and hepatic glucose metabolic rate estimates. Kinetic parameter estimates require the arterial blood time-activity curve and the tissue time-activity curve as input and output functions. For liver studies, however, the conventional arterial-input may not be consistent with the real model input because the liver has a dual blood supply from the hepatic artery and the portal vein to the liver. This study compares model parameter estimates using a dual-input function with results using an arterial input function. The results show that the two methods provide different parameter estimates with the dual input function leading to more accurate parameter estimates.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第3期420-423,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(60331010) 国家"九七三"基础研究项目(2006CB705700)
关键词 示踪动力学 代谢 房室模型 [^18F]氟代脱氧葡萄糖(FDG) tracer kinetics metabolism compartment model [^18F]2 fluoro-2 deoxy-D glucose (FDG)
  • 相关文献

参考文献14

  • 1Li X,Feng D,Lin K P,et al.Estimation of myocardial glucose utilization with PET using the left ventricular time-activity curve as a noninvasive input function[J].Medical & Biological Engineering & Computing,1998,36(1):112-117.
  • 2Huang S C,Phelps M E,Hoffman E J,et al.Noninvasive determination of local cerebral metabolic rate of glucose in man[J].American Journal of Physiology-Endocrinology and Metabolism,1980,238:69-82.
  • 3Selberg O,Muller M J,van den Hoff J,et al.Use of positron emission tomography for the assessment of skeletal muscle glucose metabolism[J].Nutrition,2002,18(4):323-328.
  • 4Bertoldo A,Vicini P,Sambueeti G,et al.Evaluation of compartmental and spectral analysis models of[^18F]FDG kinetics for heart and brain studies with PET[J].Biomedical Engineering,IEEE Transactions on,1998,45(12):1429-1448.
  • 5Feng D,Li X,Huang S C.A new double modeling approach for dynamic cardiac PET studies using noise and spillover contaminated LV measurements[J].IEEE Transactions on Biomedical Engineering,1996,43(3):319-327.
  • 6Reinhardt M,Beu M,Vosberg H,et al.Quantification of glucose transport and phosphorylation in human skeletal muscle using FDG PET[J].Journal of Nuclear Medicine,1999,40(6):977-985.
  • 7Choi Y,Hawkins R A,Huang S C,et al.Evaluation of the effect of glucose-ingestion and kinetic-model configurations of FDG in the normal liver[J].Journal of Nuclear Medicine,1994,35(5):818-823.
  • 8Munk O L,Bass L,Roetsgaard K,et al.Liver kinetics of glucose analogs measured in pigs by PET:Importance of dual input blood sampling[J].Journal of Nuclear Medicine,2001,42(5):795-801.
  • 9Wong K P,Feng D,Meikle S R,et al.Simultaneous estimation of physiological parameters and the input function-in vivo PET data[J].IEEE Transactions on Information Technology in Biomedicine,2001,5(1):67-76.
  • 10Correia J.A bloody future for clinical PET[J].Journal of Nuclear Medicine,1992,33:620-622.

同被引文献90

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部