期刊文献+

传输线充电技术实现高功率亚纳秒电磁脉冲调制

Realization of subnanosecond power conditioning by using transmission line charging technique
下载PDF
导出
摘要 分析比较了阻抗匹配和失配情况下传输线充电的原理和波过程。分析结果表明:失配情况下的最大优点是能够实现脉冲功率增益。应用阻抗为27Ω、长度为540 mm传输线为充电传输线和长度分别为30,45,60 mm、阻抗均为5Ω传输线为被充电传输线进行了对比试验。实验结果表明:在距离辐射天线6 m处,输出辐射场强随低阻抗传输线长度增加而略有增加,最大辐射场强为49 kV/m,考虑气体开关的实际能量损耗,这与理论分析的充电电压和功率增益关系相吻合;长度为45 mm的5Ω被充电传输线的输出脉冲前沿约210 ps,幅度约为150 kV。 The wave process and principle of the transmission line charging in impedance matched and mismatched condition are analyzed. The results show that the impedance mismatched charging technology can realize the power gain but lower the energy efficiency, while the impedance matched charging technology can obtain an energy transmission efficiency of 100Ω, but can't realize the power gain. The radiation fields of the 5Ω charged transmission line with length of 30,45,60 mm are studied experimentally, using 27Ω charging transmission line, which is 540 mm long. A output pulse with risetime about 210 ps and peak voltage about 150 kV is obtained on the 5Ω charged line, which is 45 mm long. The radiation electric field increases a little as the length of the charged transmission line increases, the maximum electric field is up to 49 kV/m at 6 m away from radiation antenna. Considering the energy loss of air spark gap, the experimental result agrees with the theoretical analysis.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2007年第1期165-168,共4页 High Power Laser and Particle Beams
基金 国防高科技重点实验室基金资助课题(YS05)
关键词 充电传输线 亚纳秒 高功率脉冲 阻抗匹配 辐射场强 波过程 Charging transmission line Subnanosecond High power pulse Impedance matched Radiation electric field Wave process
  • 相关文献

参考文献6

二级参考文献12

  • 1Andreev Y A, Buyanov Y I, Efremov A M, et al. High power ultra wideband electromagnetic radiation generator[A]. The 11th IEEE International Pulsed Power Conference[C]. Maryland,1997. 730-735.
  • 2Dyad'kov A N, Ivanov S N, Ul'maskulov M R. Pulse generators with subnanosecond fronts on mercury reed relays[J]. Instruments and Experimental Techniques, 1998,41 (3) : 358- 361.
  • 3Shpak V G, Shunailov S A, Ulmaskulov M R, et al. Generation of high power broadband electromagnetic pulse with PRF of 100pps[A]. The 10th IEEE International Pulsed Power Conference[C]. Albuquerque, New Mexico, 1995. 666-671.
  • 4Yalandin M I, Lyubutin S K, Oulmascoulov M R, et al. Subnanosecond modulator possessing a 700MV peak power and average power of 1.5kW at repetition frequency of 3.5 kHz[A]. The 28th IEEE International Conference on Plasma Science and the 13th IEEE International Pulsed Power Conference[C]. Las Vegas, Nevada, 2001. 1630-1634.
  • 5Mankowski J, Dickens J, Kristiansen M. High voltage subnanosecond breakdown[J]. IEEE Transactions on Plasma Science, 1998, 126(3) :874-881.
  • 6Baum C E. Impulse radiating antenns[A]. Bertoni H, et al. Ultra-wideband, short-pulse electromagnetics[M]. New York, Plenum Press,1993.
  • 7Andreev Y A, Buyanov Y I, Efremov A M, et al. High power ultra widebandelectromagnetic radiation generator[A]. The 11th IEEE International Pulsed PowerConference[C]. Maryland,1997. 730-735.
  • 8Dyad'kov A N, Ivanov S N, Ul'maskulov M R. Pulse generators with subnanosecondfronts on mercury reed relays[J]. Instruments and Experimental Techniques,1998,41(3):358-361.
  • 9Shpak V G, Shunailov S A, Ulmaskulov M R, et al. Generation of high power broadbandelectromagnetic pulse with PRF of 100pps[A]. The 10th IEEE International Pulsed PowerConference[C].Albuquerque, New Mexico, 1995.666-671.
  • 10Yalandin M I, Lyubutin S K, Oulmascoulov M R, et al. Subnanosecond modulatorpossessing a 700MV peak power and average power of 1.5kW at repetition frequency of3.5 kHz[A]. The 28th IEEE International Conference on Plasma Science and the 13thIEEE Internatio

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部