期刊文献+

同心球间旋转流动类Lorenz方程组的分歧问题

BIFURCATION PROBLEMS OF THE MODEL SYSTEM SIMILAR TO THE LORENZ EQUATIONS OF THE FLOW BETWEEN TWO CONCENTRIC ROTATING SPHERES
下载PDF
导出
摘要 本文对同心球间旋转流动的Navier-Stokes方程谱展开后进行三模态截断,研究了所得到的类Lorenz型方程组的分歧问题.推导了同心球间旋转流动的Navier-Stokes方程的流函数-涡度形式,给出了静态奇异点的条件,并计算出解分支. Bifurcation problems of the model system similar to the Lorenz equations of the Navier-Stokes equations for the flow between two concentric rotating spheres are discussed. Velocity-stream function form of the Navier-stokes equations for the flow between two concentric rotating spheres is deduced,and detection conditions of singular point and solution branches are given.
出处 《数学杂志》 CSCD 北大核心 2007年第1期111-118,共8页 Journal of Mathematics
基金 辽宁省教委科研基金资助项目(200401081) 辽宁工学院教师基金资助项目.
关键词 NAVIER-STOKES方程 球Couette流 LORENZ方程 Navier-Stokes equations spherical Couette flow the Lorenz equations
  • 相关文献

参考文献2

二级参考文献12

  • 1袁礼,傅德薰,马延文.球形Taylor-Couette流分叉解的数值模拟研究[J].中国科学(A辑),1995,25(9):967-975. 被引量:2
  • 2[3]萧树铁.代数与几何[M].北京:高等教育出版社,2000.
  • 3[1]Anderreck C D, Liu S S, Swinney H L. Flow regimes in a circular Couette system with independent rotating cylinders[J]. J Fluid Mech, 1986,164( 1 ): 155-183.
  • 4[2]Yasusi Takada. Quasi-periodic state and transition to turbulence in a rotating Couette system[J]. J Fluid Mech, 1999,389(1) :81-99.
  • 5[3]Coughlin K T, Marcus P S, Tagg R P, et al. Distinct quasiperiodic modes with like symmetry in a rotating fluid[J]. Phys Rev Lett, 1991, 66(1) :1161-1164.
  • 6[4]Meincke O, Egbers C. Routes into chaos in small and wide gap Taylor-Coutte flow[ J ]. Phys Chem Earth B, 1999,24(5) :467-471.
  • 7[5]Takeda Y, Fischer W E, Sakakibara J. Messurement of energy spectral density of a flow in a rotating Couette system[J]. Phys Rev Lett, 1993,70( 1 ) :3569-3571.
  • 8[6]Wimmer M. Experiments on the stability of viscous flow between two concentric rotating spheres [J]. J Fluid Mech, 1980,103( 1 ): 117-131.
  • 9[7]Taylor G I. Stability of a viscous liquid contained between two rotating cylinders[J]. Phil Trans Roy Soc London A, 1923,223( 1 ): 289-343.
  • 10[9]刘式达,刘式适.特殊函数[M].北京:气象出版社,1988,202-203.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部