摘要
应用小波包分析方法构造滚动轴承故障信号的能量特征向量,再以此作为神经网络的输入,对滚动轴承故障进行分类,实践表明,能量特征向量较显著的表达了故障,有较好的诊断效果.
The feature parameter vectors are extracted to represent the working state of rolling bearing by wavelet packet decomposition.Then the BP neural network is taken as the output of the working state of rolling bearing when the feature parameter vectors is taken as input.The experimental results prove that this method is efficient and feasible in rolling bearing fault diagnosis.
出处
《江西理工大学学报》
CAS
2007年第1期17-20,共4页
Journal of Jiangxi University of Science and Technology
关键词
滚动轴承
小波包分析
能量特征向量
BP神经网络
rolling bearing
wavelet packet decomposition
the feature parameter vectors
BP neural network