期刊文献+

D-核糖作为一种新型营养添加剂的基本科学原理(之一)D-核糖支持骨骼肌的健康和功能的机理浅释

The science of D- ribose as a new functional ingredients in food and beverage (I)——The mechanism on the health of skelton muscles
下载PDF
导出
摘要 由于高强度训练所造成的肌肉局部缺血或者局部组织缺氧会破坏细胞能量的运转机制(如破坏氧化磷酸化、醣酵解和肌氨酸D-核糖激活酶反应)。能量需求与供给的失衡导致嘌呤从细胞中的不断流失且有可能耗尽细胞能量。这种核苷酸的流失是新陈代谢的灾难,因为流失后细胞的自身补充过程缓慢,并且会导致新陈代谢异常。这种能量的损耗往往会导致诸如肌肉僵硬、虚弱、疼痛、细胞受损以及蛋白质合成水平降低等各种生理问题。 D-核糖通过补救和重新合成嘌呤核苷酸、减少细胞的嘌呤损失以及加速细胞能量恢复等方式刺激嘌呤核苷酸的迅速合成,以使细胞能量代谢平衡,由于缺氧而造成的细胞能量损耗所产生的生理问题也可得以缓解。 本文通过论述对D-核糖对缺血、缺氧细胞能量代谢的调整机理的论述,阐明D-核糖作为一种新型能量食品添加剂的基本科学原理。 High- intensity exercise, muscle ischemia, or localized hypoxia overwhelms the cellular energy turnover mechanisms, oxidative phosphorylation, glycolysis, and the creatine kinase reaction. The resulting energy demand/ supply mismatch leads to a cascade of reactions that drain purines from the cell and deplete the cellular energy, or adenylate, pool. This loss of energy substrates is a metabolic disaster to the cell because re - supply is slow and metabolically costly, and the resulting depletion in energy availability contributes to a variety of physiological conditions, including muscle stiffness, weakness, pain, cell damage, and depressed levels of protein synthesis. 1) - Ribose stimulates the purine nucleotide pathway associated with salvage and de novo synthesis of purine nucleotides, reduces cellular pu- fine loss, and accelerates energy recovery in the cell. Through this action, cellular energy charge is preserved and physiological consequences of depleted cellular energy are reduced. This paper illustrated the mechanisms of D - ribose on energy metabolism under ischemia or hypoxic situation, especially for skeleton muscles. The clinical results showed the facts that D - ribose is an efficient functional ingredient for food and beverage, especially for sports nutrition.
出处 《中国食品添加剂》 CAS 2007年第G00期109-115,共7页 China Food Additives
关键词 D-核糖 体能恢复 增加耐力 运动营养 D - ribose sports nutrition recovery endurance
  • 相关文献

参考文献27

  • 1Bernardi JM, TN Ziegenfuss. Effects of ribose supplementation on repeated sprint performance in men. J Strength Cond Res,2003; 17 (1): 47-52. 2.
  • 2Brault J J, RL Terjung. Purine salvage to adenine nucleotides in different skeletal muscle fiber types. J Appl Physiol, 2001 ; 91 :231 -238. 3.
  • 3Dodd SL, CA Johnson, K Fernholz, JA St. Cyr. The role of ribose in human skeletal muscle metabolism. Meal Hypoth,2004; 62: 819-824. 4.
  • 4Gebhart B, J Jorgenson. Benefit of ribose in a patient with fibromyalgia. Pharm2004, 24 (11): 1646-1648. 5.
  • 5Gross M, S Reiter, N Zollner. Metabolism of D - ribose administered to healthy persons and to patients with myoadenylate deaminase deficiency. Klin Wochenschr 1989; 67:1205 - 1213.6.
  • 6Gross M, B Kormann, N Zollner. Ribose administration during exercise: effects on substrates and products of energy metabolism in healthy subjects and a patient with myoadenylate deaminase deficiency. Klin Wochenschr 1991 ; 69:151 -155. 7.
  • 7Gumaa KA, P McLean. The pentose phosphate pathway of glucose metabolism. Biochem J, 1969; 115: 1009-1029. 8.
  • 8Hancock CR, JJ Brault, RW Wiseman, RL Terjung, RA Meyer. 31P - NMR observation of free ADP during fatiguing, repetitive contractions of murine skeletal muscle lacking AK1. Am J Physiol Cell Physiol, 2005; 288: C1298-C1304. 9.
  • 9Hellsten - Westing Y, PD Balsom, B Norman, B Sjodin. The effect of high - intensity training on purine metabolism in man.Acta Physiol Scand, 1993; 149: 405-412. 10.
  • 10Hellsten - Westing Y, B Norman, PD Balsom, B Sjodin. Decreased resting levels of adenine nucleotides in human skeletal muscle after high - intensity training. J Appl Physiol, 1993;74 (5): 2523-2528. 11.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部