期刊文献+

可能性线性模型中的参数选优与输入噪声间关系的研究 被引量:1

Research on the Dependency between Optimal Parameter and the Input Noise in Possibilistic Linear Model
原文传递
导出
摘要 基于可能性理论的可能性线性模型(PLM)在模糊建模等应用中有重要的作用.本文首先借鉴统计学习理论将此模型扩展为正则化(regularized)的可能性线性模型(RPLM),以提高其泛化能力.然后利用将其优化问题转换为最大后验估计问题的新方法,研究当数据含有噪声时,模型中的拟合门限值λ和输入噪声均方差σ之间的关系.理论推导和仿真实验均证明,当输入噪声为高斯模型时,λ和σ成近似的线性反比关系.该结论对 PLM 和RPLM 均有借鉴意义,为已知输入噪声均方差时,合理选择λ提供理论依据. Possibilistic linear model (PLM) based on possibility theory plays a pivotal role in fuzzy modeling. In order to enhance the generalization capability of the linear model, the regularized version is firstly extended, i.e. the regularized possibilistic linear model (RPLM). Then the RPLM is transformed into the corresponding equivalent MAP problem. Accordingly, with a series of mathematical derivation, the inversely proportional dependency between the parameter and the standard deviation of Gaussian noisy input is revealed. In the meanwhile, the simulation result has proved this conclusion. Obviously, the conclusion is helpful for the practical applications of both PLM and RPLM.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2007年第1期42-47,共6页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.60225015) 江苏省自然科学基金项目(No.BK2003017) 教育部新世纪优秀人才基金项目(No.NCET-04-0496) 教育部科学研究重点项目(No.105087)
关键词 可能性理论 可能性线性模型(PLM) 最大后验估计(MAP) Possibility Theory, Possibilistic Linear Model (PLM), Maximum a Posteriori(MAP)
  • 相关文献

参考文献9

  • 1Tanaka H, Uejima S, Asai K. Linear Regression Analysis with Fuzzy Model. IEEE Trans on Systems, Man, and Cybernetics,1982, 12(6): 903-907
  • 2Yen K K, Ghoshray S, Roig G. A Linear Regression Model Using Triangular Fuzzy Number Coefficients. Fuzzy Sets and Systems, 1999, 106(2): 167-177
  • 3Gao J B, Gunn S R, Ham's C J, etal. A Probabilistic Framework for SVM Regression and Error Bar Estimation. Machine Learning, 2002, 46(3): 71-89
  • 4Kwok J T, Tsang I W. Linear Dependency between ε and the Input Noise in c-Support Vector Regression. IEEE Trans on Neural Networks, 2003, 14(3): 544-553
  • 5Wang Shitong, Zhu Jiagang, Chung F L, et al. Theoretically Optimal Parameter Choices for Support Vector Regression Machines with Noisy Input. Soft Computing, 2005, 9(10) : 732-741
  • 6吴今培.基于可能性理论的设备故障诊断[J].模糊系统与数学,1999,13(2):25-32. 被引量:4
  • 7Law M H, Kwok J T. Bayesian Support Vector Regression //Proc of the 8th International Workshop on Artificial Intelligence and Statistics Key West, USA, 2001:239-244
  • 8Wang Shitong, Chung K F, Shen Hongbin, etal. Note on the Relationship between Probabilistic Fuzzy Clustering. Soft Computing, 2004, 8(7): 523-526
  • 9Hong D H, Hwang C. Support Vector Fuzzy Regression Machines. Fuzzy Sets and Systems, 2003, 138(3): 271-281

二级参考文献1

  • 1吴今培,智能故障诊断与专家系统,1997年

共引文献3

同被引文献19

  • 1Lin Yin, Yang Ruikang, Gabbouj M, et al. Weighted Median Filters: A Tutorial. IEEE Trans on Circuits and Systems, 1996, 43 (3) : 157 -192.
  • 2Aree G R. A General Weighted Median Filter Structure Admitting Negative Weights. IEEE Trans on Signal Processing, 1998, 46 (12):3195 -3205.
  • 3Lukac R. Performance Boundaries of Optimal Weighted Median Filters. International Journal of Image and Graphics, 2004, 4 ( 2 ) :157 - 182.
  • 4Ko S J, Lee Y H. Center Weighted Median Filters and Their Applications to Image Enhancement. IEEE Trans on Circuits and Systems, 1991, 38(9) : 984 -993.
  • 5Chen T, Wu Hongren. Adaptive Impulse Detection Using Center- Weighted Median Filters. IEEE Signal Processing Letters, 2001, 8 (1): 1-3.
  • 6Sun Tong, Neuvo Y. Detail-Preserving Median-Based Filters in Image Processing. Pattern Recognition Letters, 1994, 15 (4) : 341 - 347.
  • 7Chen Tao, Ma Kaikuang, Chen Lihui. Tri-State Median Filter for Image Denoising. IEEE Trans on Image Processing, 1999, 8 (12 ) : 1834 - 1838.
  • 8Smolka B, Chydzinski A. Fast Detection and Impulsive Noise Removal in Color Images. Real-Time Imaging, 2005, 11 ( 5/6 ) : 389 - 402.
  • 9Lukae R, Smolka B, Plataniotis K N, et al. Vector Sigma Filters for Noise Detection and Removal in Color Images. Journal of Visual Communication and Image Representation, 2006, 1 ( 1 ) : 1 - 26.
  • 10Ge Hongwei, Chung F L, Wang Shitong. Theoretical Choice of the Optimal Threshold for Possibilistic Linear Model with Noisy Input. IEEE Trans on Fuzzy Systems, 2008, 16(4) : 1027 -1037.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部