期刊文献+

自适应免疫算法及其对动态函数优化的跟踪 被引量:14

Adaptive Immune Algorithm and Its Track to Dynamic Function Optimization
原文传递
导出
摘要 基于生物免疫系统的自适应学习、记忆、监视等功能,设计适用于高维动态函数优化的自适应免疫算法.算法设计中,利用抗体的学习功能设计抗体动态进化模块;利用基因漂移促成抗体群中非优越抗体重构;利用记忆特性和记忆池动态维持功能,设计由记忆子集合构成的动态记忆池,并经由 Average linkage 保存优秀的记忆细胞;利用动态监视功能建立环境判别规则和初始抗体群的生成规则.该算法结构简单、灵活,以及在不同环境下寻优时间可以动态调节.数值实验比较显示出其优越性和在执行效率、执行效果中寻求权衡的有效性,并且对复杂的高维动态环境优化问题具有较大应用潜力. An adaptive immune algorithm, based on the functions of the biological immune system such as adaptive learning, memory and surveillance, is proposed to solve high dimensional dynamical function optimization. In the algorithm, with structural simplicity, feasibility, and dynamical regulation of the execution time for different environments, the dynamical evolution and antibody rearrangement are involved. The dynamical memory pool consists of memory subsets related to the characteristics of immune memory and dynamical maintenance of the pool, in which each subset keeps some excellent memory cells obtained by the average linkage. In the meanwhile, dynamical surveillance and memory establish the environmental identification and generation rule of initial antibody populations. Experimental results and comparison illustrate the superiority and the effective trade-off between performance effect and efficiency as well as the potential in the complex dynamical high-dimensional optimization problems.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2007年第1期85-94,共10页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金(No.60565002) 贵州科技专项基金(No.20052108) 贵州省优秀人才省长基金(No.20050706) 博士启动基金(No.2004001)
关键词 动态环境 函数优化 环境跟踪 高维移动峰 免疫算法 Dynamic Environment , Function Optimization , Environment Tracking , HighDimensional Moving Peaks, Immune Algorithm
  • 相关文献

参考文献19

  • 1Dasgupta D, McGregor D R. Nonstationary Function Optimization Using the Structured Genetic Algorithm // Manner R,Manderick B, eds. Proc of the 2nd International Conference on Parallel Problem Solving from Nature. Belgium, Brussels,1992:145-154
  • 2Simoes A, Costa E. Using GAs to Deal with Dynamic Environments: A Comparative Study of Several Approaches Based on Promoting Diversity // Proc of the Genetic and Evolutionary Computation Conference. New York, USA: Morgan Kaufmann, 2002:9-13
  • 3Yang Shengxiang. Constructing Dynamic Test Environments for Genetic Algorithms Based on Problem Difficulty // Proc of the IEEE Congress on Computation. Portland, USA, 2004, Ⅱ :1262-1269
  • 4Smith J E, Vavak F. Replacement Strategies in Steady State Genetic Algorithms: Dynamic Environments. Journal of Computing and Information Technology, 1999, 7(1): 49-59
  • 5Fogel L J, Owens A J, Walsh M J. Artificial Intelligence through Simulated Evolution. New York, USA: Wiley, 1966
  • 6Cobb H G. An Investigation into the Use of Hypermutation as Adaptive Operator in Genetic Algorithms Having Continues,Time Dependent Nonstationary Environments. Technical Report, AIC-90-001, Washington, USA: Naval Research Laboratory, 1990
  • 7Grefenstette J. Genetic Algorithms for Changing Environments// Proc of the 2nd International Conference on Parallel Problem Solving from Nature. Belgium, Brussels, 1992:137-144
  • 8Oppacher F, Wineberg M. The Shifting Balance Genetic Algorithm: Improving the GA in a Dynamic Environment// Banzhaf W, Daida J, Eiben A E, et al, eds. Proc of the Genetic and Evolutionary Computation Conference. San Francisco, USA:Morgan Kaufmann, 1999:504-510
  • 9Branke J. Memory Enhanced Evolutionary Algorithms for Changing Optimization Problems// Angeline P J, Michalewicz Z, Schoenauer M, et al, eds. Proc of the Congress on Evolutionary Computation.Washington, USA: IEEE Press, 1999, Ⅲ: 1875-1882
  • 10Aragon V S, Esquivel S C. An Evolutionary Algorithm to Track Changes of Optimum Value Locations in Dynamic Environments. Journal of Computer Science and Technology, 2004,4(3): 127-134

二级参考文献9

  • 1Branke J. Evolutionary optimization in dynamic environment [M]. Norwell, Netherlands: Kluwer Academic Publishers,2002.
  • 2Walker J H, Garrett S M. Dynamic function optimization: comparing the performance of clonal selection and evolution strategies [A]. Proceedings of Second International Conference on Artificial Immune Systems [C]. Berlin:Springer-Verlag, 2003. 273-284.
  • 3Branke J. Evolutionary applications to dynamic optimization problems: introduction and recent trends[A]. The Workshop on Evolutionary Algorithms for Dynamic Optimization Problems, Chicago, USA, 2003.
  • 4Gaspar A, Collard P. From GAs to artificial immune systems: improving adaptation in time dependent optimization [A]. Proceedings of the Congress on Evolutionary Computation[C]. Washington DC: IEEE Press, 1999.1 859-1 866.
  • 5Kesmir C, Boer R J D. A mathematical model on germinal center kinetics and termination [J]. The Journal of Immunology, 1999, 163(5): 2 463-2 469.
  • 6Meyer-Hermann M. A mathematical model for the germinal center morphology and affinity maturation [J]. Journal of Theoretical Biology, 2002, 216(3): 273-300.
  • 7Iber D, Maini P K. A mathematical model for germinal centre kinetics and affinity maturation [J]. Journal of Theoretical Biology, 2002, 219(2): 153-175.
  • 8Yang-Shih T A, Meffre E, Roederer M, et al. Role of BCR affinity in T cell-dependent antibody tesponses in vivo [J]. Nature Immunology, 2002, 3 (6): 570-575.
  • 9Morrison R W, Jong K A D. A test problem generator for non-stationary environments [A]. Proceedings of the Congress on Evolutionary Computation [C]. Washington DC: IEEE Press, 1999. 2 047-2 053.

共引文献6

同被引文献104

引证文献14

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部