摘要
In this study, the superoxide anion radicals were generated by the auto-oxidation of 1,2,3-trihydroxybenzene and determined by UV spectrophotometry, and the reaction was found to be facilitated by anthraquinone-2-sulfonic acid sodium salt. The bamboo kraft pulps were treated by the 1,2,3-trihydroxybenzene auto-oxidation method or the 1,2,3-trihydroxybenzene auto-oxidation combined with anthraquinone-2-sulfonic acid sodium salt to show the ef-fect of the superoxide anion radicals during the oxygen delignification of bamboo kraft pulp and the enhancing af-fect of anthraquinone compounds as an additive on delignification. The results indicated that the superoxide anion radicals could react with lignin and remove it from pulp with negligible damage on cellulose, and the an-thraquinone-2-sulfonic acid sodium salt could facilitate the generation of superoxide anion radical to enhance delig-nification of pulps. The oxygen delignification selectivity could be improved using the 1,2,3-trihydroxybenzene auto-oxidation system combined with anthraquinone-2-sulfonic acid sodium salt.
In this study, the superoxide anion radicals were generated by the auto-oxidation of 1,2,3-trihydroxybenzene and determined by UV spectrophotometry, and the reaction was found to be facilitated by anthraquinone-2-sulfonic acid sodium salt. The bamboo kraft pulps were treated by the 1,2,3-trihydroxybenzene auto-oxidation method or the 1,2,3-trihydroxybenzene auto-oxidation combined with anthraquinone-2-sulfonic acid sodium salt to show the ef- fect of the superoxide anion radicals during the oxygen delignification of bamboo kraft pulp and the enhancing affect of anthraquinone compounds as an additive on delignification. The results indicated that the superoxide anion radicals could react with lignin and remove it from pulp with negligible damage on cellulose, and the anthraquinone-2-sulfonic acid sodium salt could facilitate the generation of superoxide anion radical to enhance delig- nification of pulps. The oxygen delignification selectivity could be improved using the 1,2,3-trihydroxybenzene auto-oxidation system combined with anthraquinone-2-sulfonic acid sodium salt.
基金
Supported by the National Natural Science Foundation of China (No.20477046)
the Natural Science Foundation of Fujian Prov-ince of China (No.2004HZ03-5)
the Young Scientist Innovation Foundation of Fujian Province of China (No.2006F3009).