期刊文献+

Cu-Sn-Ti体系边际二元系界面反应的研究 被引量:1

Study on interfacial reactions of Cu-Sn-Ti boundary binary systems
下载PDF
导出
摘要 Cu-Sn-Ti三元系及其相关的3个二元系均具有重要的实用价值.实验制备了Ti/Sn和Cu/Sn固-液扩散偶及Cu/Ti二元固相扩散偶,经电子显微和探针观测发现: Ti/Sn固-液扩散偶在873K下退火30~160min,只生成1个Sn3Ti2中间相; Cu/Sn固-液扩散偶在808K下退火10min时也只生成1个Cu3Sn中间相,但退火时间延长至30min时在Cu与Cu3Sn界面上生成Cu41Sn11,退火60min后在Cu与Cu41Sn11之间又生成了bcc-a2; Cu/Ti二元固相扩散偶在1023K下退火1000h后,在其界面处生成了CuTi2、CuTi、Cu4Ti3、Cu4Ti 4个化合物,而Cu3Ti2相并未在扩散偶中出现.还采用最大驱动力模型对上述3个二元系的界面反应过程进行了计算并成功解释了相应的实验现象. Cu-Sn-Ti ternary system and its related three boundary solid/solid binary systems are of critical importance in practice.Ti/Sn and Cu/Sn solid/liquid diffusion couples and Cu/Ti diffusion couples are prepared and then examined using SEM and EPMA.Only Sn3Ti2 forms if Ti/Sn solid/liquid diffusion couples are annealed at 873 K for 30-160 min.When annealed at 808 K for 10 min,only Cu3Sn forms in Cu/Sn solid/liquid diffusion couple.With the annealed time increasing,Cu41Sn11 layer forms between Cu and Cu3Sn in 30 min, and then bcc-a2 layer formsbetween Cu and Cu411Sn11 in 60 min. After annealing at 1 023 K for 1000 hours, four compounds, CuTi2, CuTi, Cu4 Ti3 and Cu4 Ti form in Cu/Ti diffusion couple while Cu3 Ti2 is absent. The interracial reaction process and phase formation sequence have been predicted with maximum driving force model using Thermo-Calc software.
作者 李大建
出处 《粉末冶金材料科学与工程》 EI 2007年第1期25-29,共5页 Materials Science and Engineering of Powder Metallurgy
基金 国家自然科学基金资助项目(50371104)
关键词 扩散偶 界面反应 最大驱动力 diffusion couple interracial reaction maximum driving force
  • 相关文献

参考文献10

  • 1[1]LI W J,LIANG C,LIN S T.Interfacial segregation of Ti in the brazing of diamond grits onto a steel substrate using a Cu-Sn-Ti brazing alloy[J].Met Mater Trans,2002,33a:2163-2172.
  • 2[2]BOETTINGER W J,JOHNSON C E,BENDERSKY L A,et al.Whisker and hillock formation on Sn,Sn-Cu and Sn-Pb electrodeposits[J].Acta Mater,2005,53(19):5033-5050.
  • 3[3]PU W,HE X,REN J,et al.Electrodeposition of Sn-Cu alloy anodes for lithium batteries[J].Electrochimica Acta,2005,50(20):4140-4145.
  • 4[4]GHOSH G.Reactive inter diffusion between a lead-free solder and T/Ni/Ag thin-film metallizations[J].J Electr Mater,2004,33(3):229-240.
  • 5[5]SUZUKI S,HIRABAYASHI K,SHIBATA H,et al.Electrical and thermal conductivities in quenched and aged high-purity Cu-Ti alloys[J].Scri Mater,2003,48(4):431-435.
  • 6[6]LEE B J,HWANG N M,LEE H M.Prediction of interface reaction products between Cu and various solder alloys by thermodynamic calculation[J].Acta Mater,1997,45:1867-1874.
  • 7[7]MASSALSKI T B.Binary Alloy Phase Diagrams[M].OH,USA:ASM International,2001:3405.
  • 8[8]KUPER C,PENG W,PISCH A,et al.Rainer S-f.Phase formation and reaction kinetics in the system Ti-Sn[J].Z Metallkd,1998,89(12):855-862.
  • 9[9]SHIM J,OH C S,LEE B J,et al.Thermodynamic assessment of the Cu-Sn system[J].Z Metallkd,1996,87(3):205-212.
  • 10[10]HARI KUMAR K C,ANSARA I,WOLLANTS P,et al.Thermodynamic optimization of the Cu-Ti system[J].Z Metallkd,1996,87(8):666-672.

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部