摘要
设P是n-立方体图Q_n的完备控制集.在1994年,Weichsel证明了存在某些整数r_1,r_2,…,r_m使P在Q+n中的诱导子图〈P〉为Q_(r1),Q_(r2),…,Q_(rm)的不交之并,并且猜想r_1=r_2=…=r_m.本文证明了当m≤20时,该猜想正确.
Let P be a perfect dominating set of the n-cube Qn. In 1994 Weichsel proved that the induced subgraph (P) of P in Qn is the disjoint union of copies of cubes {Qr1, Qr2,…, Qrm} for some set of integers {rl, r2,…,rm} and conjectured that r1=r2=…=rm. In this paper we show that the conjecture is true for m ≤ 20..
出处
《数学进展》
CSCD
北大核心
2007年第1期61-66,共6页
Advances in Mathematics(China)
基金
Foundation item:This work was supported by the NSFC(No.10571013)
the Key Project of Chinese Ministry of Education.