摘要
针对一类多观测时滞离散系统,本文提出了基于Krein空间理论解决H∞输出反馈问题的新方法.利用H∞输出反馈控制问题与不定二次型之间的关系,时滞系统的H∞控制问题分解为LQ问题和时滞的H∞估计问题.通过重组观测,时滞的H∞估计问题可转化为无时滞的H∞估计问题,从而给出由两个Riccati方程决定的H∞控制器存在的充要条件.本文的方法不需要增广系统.
A new approach to solve the H-infinity control problem for linear discrete-time systems with multiple delayed measurements is proposed based on Krein space theory. By using the relationship between H-infinity measurement- feedback control problem and indefinite quadratic form, the H-infinity control problem for the time delay system is separated into an LQ problem and a delayed H2 estimation problem which can be converted into a delay-free H2 estimation problem resorted to reorganizing the measurements. Then, a sufficient and necessary condition for the existence of the H-infinity controller which is determined by two Riccati equations is presented. The approach in this paper does not require system augmentation.
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2007年第1期46-52,58,共8页
Control Theory & Applications
基金
国家自然科学基金资助项目(60174017)
国家杰出青年基金资助项(69925308)
关键词
离散系统
多步时滞
H∞控制
KREIN空间
重组观测
discrete-time systems
multiple delays
H-infinity control
Krein space
re-organized measurements