期刊文献+

离散系统多步观测时滞的H_∞输出反馈控制 被引量:1

H-infmity measurement-feedback control for discrete-time systems with multiple delayed measurements
下载PDF
导出
摘要 针对一类多观测时滞离散系统,本文提出了基于Krein空间理论解决H∞输出反馈问题的新方法.利用H∞输出反馈控制问题与不定二次型之间的关系,时滞系统的H∞控制问题分解为LQ问题和时滞的H∞估计问题.通过重组观测,时滞的H∞估计问题可转化为无时滞的H∞估计问题,从而给出由两个Riccati方程决定的H∞控制器存在的充要条件.本文的方法不需要增广系统. A new approach to solve the H-infinity control problem for linear discrete-time systems with multiple delayed measurements is proposed based on Krein space theory. By using the relationship between H-infinity measurement- feedback control problem and indefinite quadratic form, the H-infinity control problem for the time delay system is separated into an LQ problem and a delayed H2 estimation problem which can be converted into a delay-free H2 estimation problem resorted to reorganizing the measurements. Then, a sufficient and necessary condition for the existence of the H-infinity controller which is determined by two Riccati equations is presented. The approach in this paper does not require system augmentation.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2007年第1期46-52,58,共8页 Control Theory & Applications
基金 国家自然科学基金资助项目(60174017) 国家杰出青年基金资助项(69925308)
关键词 离散系统 多步时滞 H∞控制 KREIN空间 重组观测 discrete-time systems multiple delays H-infinity control Krein space re-organized measurements
  • 相关文献

参考文献10

  • 1ZAMES G.Feedback and optimal sensitivity:model reference transformations,multiplicative seminorms and approximate inverses[J].IEEE Trans on Automatic Control,1981,26(2):301-320.
  • 2ZAMES G,FRANCIS B A.A feedback minimax sensitivity and optimal robustness[J].IEEE Trans on Automatic Control,1983,28(5):585-601.
  • 3DOYLE J C.Lecture Notes in Advances in Multivariable Control[M].Minneapolis,MN,USA:ONR/Honeywell Workshop,1984.
  • 4TADMOR G.Worst case design in the time domain:the maximum principle and the standard H∞-problem[J].Mathematical Control Signals Systems,1989,3(3):301-324.
  • 5FRIDMAN E,SHAKED U.A descriptor system approach to H∞ control of linear time-delay systems[J].IEEE Trans on Automatic Control,2002,47(2):253-270.
  • 6NAGPAL K M,RAVI R.control and estimation problems with delayed measurements:state-space solutions[J].SIAM J of Control Optimum,1997,35(4):1217-1243.
  • 7BASAR T,BERNHARD R.H∞-optimal Control and Related Minimax Problem:a Dynamic Games Approach[M].Boston,MA:Birkhauser,1991.
  • 8HASSIBI B,SAYED A H,KAILATH T.Indefinite-Quadratic Estimation and Control:a United Approach to H2 and H∞ Theories[M].New York:SIAM,1998.
  • 9LU X,ZHANG H S,WANG W,et al.Kalman filtering for multiple time-delay systems[J].Automatica,2005,41(8):1455-1461.
  • 10ZHANG H S,XIE L H,SOH Y C.A unified approach to linear estimation for discrete-time systems-part Ⅱ:H∞estimation[C]//Proc the 40th IEEE Conf on Decision and Control.Florida,USA:[s.n.],2001:2923-2928.

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部