期刊文献+

基于聚类和支持向量机的非线性时间序列故障预报 被引量:22

Nonlinear time series fault prediction based on clustering and support vector machines
下载PDF
导出
摘要 针对非线性时间序列故障预报问题,提出了一种基于聚类和支持向量机的方法.将正常的时间序列按照K-均值聚类算法进行聚类学习,同时利用支持向量机回归的时间序列预测算法获得预测序列,然后通过比较聚类所得的正常原型和预测序列的相似性实现故障预报.仿真结果表明:本文提出的方法更能满足实时性的要求,也更为准确. Based on clustering and support vector machines, a new method is proposed to solve the nonlinear time series fault prediction. The normal time series is clustered using K-means clustering algorithm to get the normal prototype. Meanwhile, the predicting series is obtained by time series predicting algorithm based on support vector regression. Fault prediction can also be implemented by calculating the similarity between the normal prototype and the predicting series. Finally, the simulation results indicate that the proposed method can predict the fault more quickly and more accurately.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2007年第1期64-68,共5页 Control Theory & Applications
基金 国家自然科学基金重点资助项目(60234010) 航空科学基金资助项目(05E52031) 国防基础科研资助项目(K1603060318)
关键词 故障预报 K-均值聚类 支持向量回归 时间序列预测 fault prediction K-means clustering support vector regression time series prediction
  • 相关文献

参考文献9

  • 1HO S L,XIE M.The use of ARIMA models for reliability forecasting and analysis[J].Computer & Industrial Engineering,1998,35(1-2):213 -216.
  • 2TSE P W,ATHERTON D P.Prediction of machine deterioration using vibration based fault trends and recurrent neural networks[J].J of Vibration & Acoustics,1999,121(7):355-362.
  • 3JAIN A K,MURTY M N.Data clustering:areview[J].ACM Computing Surveys,1999,31(3):264-323.
  • 4RICHARD O D,PETER E H,DAVID G S.Pattern Classification[M].Second Edition.New York:John Wiley & Sons,2002.
  • 5VAPNIK V N.The Nature of Statistical Learning Theory[M].New York:Springer,1995.
  • 6THISSENA U,BRAKELA R,et al.Using support vector machines for time series prediction[J].Chemometrics & Intelligent Laboratory Systems,2003,6(9):35 -49
  • 7VAPNIK V N.Statistical Learning Theory[M].New York:Wiley,1998.
  • 8JAMES T K,IVOR W T.Linear dependency between e and the input noise in e-support vector regression[J].IEEE Trans on Neural Networks,2003,14(5):544-553.
  • 9MATTERA D,HAYKIN S.Support vector machines for dynamic reconstruction of a chaotic system[C]//Advances in Kernel Methods-Support Vector Learning.Cambridge:MIT Press,1999:243-254.

同被引文献135

引证文献22

二级引证文献119

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部