摘要
针对非线性时间序列故障预报问题,提出了一种基于聚类和支持向量机的方法.将正常的时间序列按照K-均值聚类算法进行聚类学习,同时利用支持向量机回归的时间序列预测算法获得预测序列,然后通过比较聚类所得的正常原型和预测序列的相似性实现故障预报.仿真结果表明:本文提出的方法更能满足实时性的要求,也更为准确.
Based on clustering and support vector machines, a new method is proposed to solve the nonlinear time series fault prediction. The normal time series is clustered using K-means clustering algorithm to get the normal prototype. Meanwhile, the predicting series is obtained by time series predicting algorithm based on support vector regression. Fault prediction can also be implemented by calculating the similarity between the normal prototype and the predicting series. Finally, the simulation results indicate that the proposed method can predict the fault more quickly and more accurately.
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2007年第1期64-68,共5页
Control Theory & Applications
基金
国家自然科学基金重点资助项目(60234010)
航空科学基金资助项目(05E52031)
国防基础科研资助项目(K1603060318)
关键词
故障预报
K-均值聚类
支持向量回归
时间序列预测
fault prediction
K-means clustering
support vector regression
time series prediction