期刊文献+

碘化钠弹性常数和声速的量子力学从头算 被引量:6

Ab initio calculations of elastic constants and sound velocity of sodium iodine
下载PDF
导出
摘要 采用从头算平面波赝势(PWP)方法结合电子交换关联能的广义梯度近似(GGA)理论,对不同压力下碘化钠的晶体结构进行几何优化计算,得到体系的最稳定优化构型和相应的能量,利用胡克定律计算得到了相应压力下的弹性性质,取得了碘化钠单晶在零温条件下、压力0~30 GPa范围内弹性常数与压力的关系.根据弹性波在晶体中的传播行为求解了碘化钠单晶[100]、[110]、[111]三个主要方向的声速. The optimization of the crystal structure of sodium iodine under various pressure are made with application of the plane wave pseudopotential (PWP) and generalized gradient approximation (GGA) in ah initio calculation. The stable structure and its system total energy are obtained for single crystal sodium iodine at 0 K. From the energy consideration and Hooke's law, the elastic constants and bulk modulus with pressure up to 30 GPa are displayed, in addition to the sound velocities in the three principal propagation directions of [1001.,[1101 and [111].
出处 《原子与分子物理学报》 CAS CSCD 北大核心 2007年第1期74-78,共5页 Journal of Atomic and Molecular Physics
基金 中国工程物理研究院院基金(20040201)
关键词 碘化钠 弹性模量 声速 elastic conszants,sound veloci .ty, plane wave pseudopotential
  • 相关文献

参考文献13

  • 1Kunz A B.Study of electronic structure of twelve alkali halides crystals[J].Phys.Rev.B,1982,26:2056
  • 2Wang Y S,Nordliander P,Tolk N H.Extend Hückel theory for ionic molecular and solids:an application to alkali halides[J].J.Chem.Phys,1988,89:4163
  • 3Ghandehari K,Akella J,Weir S T,et al.Phase stability and EOS of orthorhombic high-pressure phase of NaI to 204 GPa[J].J.Phys.Chem.Solids,2000,61:1883
  • 4Jaswal S S,Hardy R J.Velocity of second sound in Li^7F and NaI[J].Phys.Rev.B,1972,5:753
  • 5Clator R N,Marshall B J.Specific heat and elastic constants of sodium iodine at low temperature[J].Phys.Rev,1960,120:332
  • 6Cowley R A,Cochran W.Lattice dynamics of alkali halide crystals.Ⅲ.Theoretical[J].Phys.Rev,1963,131:1030
  • 7Rao B S,Sanyal S P.Structural and elastic properties of sodium halides at high pressure[J].Phys.Rev.B,1990,42:1810
  • 8Perdew J P,Burke K,Ernzerhor M.Generalized gradient approximation made simple[J].Phys.Rev.Lett,1996,77:3865
  • 9Lin J S,Qteish A,Payne M C,et al.Optimized and transferable nonlocal separable ab initio pseudopotentials[J].Phys.Rev.B,1996,47:4174
  • 10孟川民,姬广富,杨向东.固态氩弹性性质的量子力学从头计算[J].原子与分子物理学报,2005,22(2):234-237. 被引量:5

二级参考文献37

  • 1Kelly A, Macmillian N H. Strong solids (3rd edition) [M]. Oxford: Clarendon Press, 1986.
  • 2Roundy D, Krenn C R, Cohen M L, et al. Ideal shear strengths of fcc aluminum and copper [J]. Phys. Rev. Lett., 1999, 2(13):2713~2716.
  • 3Xu W, Moriarty J A. First principles force field for metallic tantalum[J]. Phys. Rev., 1996, B54:6941~6951.
  • 4Ogata S, Li J, Yip S. Ideal pure shear strength of aluminum and copper[J]. Science, 2002, 298:807~811.
  • 5Li W X,Wang T C. Ab initio investigation of the elasticity and stability of aluminum[J]. J. Phys: Condens Matter, 1998, 10:9889~9904.
  • 6Sin'ko G V,Smirnov N A. Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure, J Phys: Condens Matter [J]. J. Phys: Condens Matter, 2002, 14: 6989~7005.
  • 7McMahan A K,Moriarty J A. Structural phase stability in third-period simple metals[J]. Phys. Rev., 1983, B27:3235~3251.
  • 8Sin'ho G V,Smirnov N A. Ab initio calculations of the equation of state and elastic constants of aluminum in the region of negative pressures[J]. JETP Letters, 2002, 75:184~186.
  • 9Venables J A,Klein M L(eds.). Rare gas solid [M]. Vols. Ⅰ and Ⅱ, New York: Academic, 1976.
  • 10van Thiel M,Alder B J. Shock compression of argon [J]. J. Chem. Phys., 1966, 44: 1056~1065.

共引文献38

同被引文献28

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部