期刊文献+

立方非线性Schrdinger方程的Weierstrass椭圆函数周期解 被引量:5

The new periodic wave solutions for cubic nonlinear Schrdinger equation
下载PDF
导出
摘要 利用Weierstrass椭圆函数展开法对非线性光学、等离子体物理等许多系统中出现的立方非线性Schrdinger方程进行了研究.首先通过行波变换将方程化为一个常微分方程,再利用Weierstrass椭圆函数展开法思想将其化为一组超定代数方程组,通过解超定方程组,求得了含Weierstrass椭圆函数的周期解,以及对应的Jacobi椭圆函数解和极限情况下退化的孤波解.该方法有以下两个特点:一是可以借助数学软件Mathematica自动地完成;二是可以用于求解其它的非线性演化方程(方程组). The cubic nonlinear Schroedinger(CNLS)equation, which'exist widely in some systems such as plasma physics, nonlinear optics etc, has been studied by using the Weierstrass elliptic function expansion method. With the aid of travelling wave transformation, the CNLS equation can be reduced to an ordinary differential equation. Then, the main step of this algorithm changes the problem solving an ordinary differential equation into another one solving the corresponding set of nonlinear algebraic equations. As a conclusion, some new doubly periodic wave solutions are obtained in terms of the Weierstrass elliptic function. Meariwhile, the corresponding Jacobi elliptic function solutions and the solitary wave solutions are derived in the limit case. The method has two virtues: one is the process can be performed in computerized symbolic computation system such as Mathematica. Another is the method can be also applied to many nonlinear differential equation(equations) in mathematical physics.
出处 《原子与分子物理学报》 CAS CSCD 北大核心 2007年第1期149-152,共4页 Journal of Atomic and Molecular Physics
基金 国家自然科学基金(10247008 10575082) 甘肃省自然科学基金(YS021-A22-018) 西北师范大学科技创新工程(NWNU-KJCXGC-215)
关键词 立方非线性Schr(o)dinger方程 Weierstrass椭圆函数展开法 周期解 cubic nonlinear Schroedinger equation, Weierstrass elliptic function expansion method, periodic wave solutions
  • 相关文献

参考文献3

二级参考文献18

  • 1范恩贵 张鸿庆.-[J].物理学报,1998,47:353-353.
  • 2Feng X. Exploratory approach to explicit solution of nonlinear evolution equations[J]. Int. J. Thero. Phys.,2000,39 : 207-222.
  • 3Wang M L. Solitary wave solutions for variant Boussinesq equations[J]. Phys. Lett., 1995, A199:169-172.
  • 4Wang M L. Exact solutions of a compound KdV-Burgers equation[J]. Phys. Lett., 1996, A213:279-287.
  • 5Wang M L and Wang Y M. A new Baecklund trandformation and multi-solutions to the KdV equation with general variable coefficients[ J ]. Phys. Lett.,2001, A287:211-216.
  • 6Zhou Y B, Wang M L and Wang Y M. Periodic wave solutions to a coupled KdV equations with variable coefficients[J]. Phys. Lett., 2003, A308:31-36.
  • 7Ablowitz M J P and Oarkson P A. Solitons, Nonlinear Evolution Equations and Inverse Scattering[M]. 1991,Cambridge University Press, New York.
  • 8Gu C H. et al. Soliton Theory and its Aplication[M].1990, Zhejiang Publishing House of Science and Technology, Hangzhou.
  • 9Miura M R. Baecklund Transformation[M]. 1978,Springer Verlag, Berlin.
  • 10Liu S K. et al. Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations[J]. Phys. Lett., 2001, A289:69-74.

共引文献17

同被引文献60

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部