摘要
对于资产价格服从几何Brown运动的连续时间消费投资组合问题,在假设个人的效用函数属于双曲型绝对风险厌恶函数族的条件下,简化了模型,得到了最优消费投资组合策略的显示解.并证明了几个关于最优解的重要定理.
For the case when asset prices satisfy the geometric Brownian motion' s continuous-time consumption-portfolio problem, the model is simplified and explicit solutions for the optimal consumption and portfolio rules are derived. A few theorems about the optimal solutions are proved under the assumption that the utility function of the individual is a member of the hyperbolic absolute risk aversion (HARA) family.
出处
《上海理工大学学报》
EI
CAS
北大核心
2007年第1期42-44,78,共4页
Journal of University of Shanghai For Science and Technology
基金
上海市重点学科建设资助项目(T0502)
关键词
最优消费与投资组合
双曲型绝对风险厌恶
效用函数
对数正态分布
optimal consumption and portfolio
hyperbolic absolute risk aversion
utility function
log-moral distribution