摘要
为了提高网站访问效率并得到有价值的个性化网页推荐,针对Web日志的新特性,提出了一种新的基于竞争凝聚的聚类算法.新算法对K-paths聚类算法进行了扩展和改进,按照路径的相似性进行聚类,采用竞争凝聚的思想,自动确定最佳的聚类数目.由于算法考虑了用户的访问兴趣,个性化网页推荐不打扰用户且不需要用户注册信息.利用关联规则得到个性化网页推荐集.用户推荐集和页面推荐集的结合大大提高了推荐效果,具有较好的扩展性.实验结果表明,与其他聚类方法相比该算法具有更高的推荐精度.
A new clustering algorithm based on competitive agglomeration was proposed to improve Web user's efficiency and get useful personalized Web recommending. As an improvement to the K-paths clustering algorithm, the new algorithm is a clustering algorithm according to path similarity, and can get best cluster numbers automatically by competitive agglomeration method. It does not disturb users and does not need any registration information because the algorithm takes into consideration the characteristics of user access sequence. The recommending system uses associate rules and integrates user clustering and page clustering to get recommending set of each user class. Experimental results showed that the correct rate of recommending was improved efficiently by using the new algorithm.
出处
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2007年第2期239-244,共6页
Journal of Zhejiang University:Engineering Science
基金
高等学校博士学科点专项科研基金资助项目(20020335020)
浙江省自然科学基金资助项目(M603230)
关键词
个性化网页推荐
竞争凝聚
用户聚类
网页聚类
personalized Web recommending
competitive agglomeration
user clustering
page clustering