期刊文献+

基于竞争凝聚的个性化网页推荐 被引量:1

Personalized Web recommending based on competitive agglomeration
下载PDF
导出
摘要 为了提高网站访问效率并得到有价值的个性化网页推荐,针对Web日志的新特性,提出了一种新的基于竞争凝聚的聚类算法.新算法对K-paths聚类算法进行了扩展和改进,按照路径的相似性进行聚类,采用竞争凝聚的思想,自动确定最佳的聚类数目.由于算法考虑了用户的访问兴趣,个性化网页推荐不打扰用户且不需要用户注册信息.利用关联规则得到个性化网页推荐集.用户推荐集和页面推荐集的结合大大提高了推荐效果,具有较好的扩展性.实验结果表明,与其他聚类方法相比该算法具有更高的推荐精度. A new clustering algorithm based on competitive agglomeration was proposed to improve Web user's efficiency and get useful personalized Web recommending. As an improvement to the K-paths clustering algorithm, the new algorithm is a clustering algorithm according to path similarity, and can get best cluster numbers automatically by competitive agglomeration method. It does not disturb users and does not need any registration information because the algorithm takes into consideration the characteristics of user access sequence. The recommending system uses associate rules and integrates user clustering and page clustering to get recommending set of each user class. Experimental results showed that the correct rate of recommending was improved efficiently by using the new algorithm.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2007年第2期239-244,共6页 Journal of Zhejiang University:Engineering Science
基金 高等学校博士学科点专项科研基金资助项目(20020335020) 浙江省自然科学基金资助项目(M603230)
关键词 个性化网页推荐 竞争凝聚 用户聚类 网页聚类 personalized Web recommending competitive agglomeration user clustering page clustering
  • 相关文献

参考文献4

二级参考文献8

  • 1Yan T,Proc of the 5th Int World Wide Web Conf,1996年,27页
  • 2Fayyad U M,Advance in knowledge discover and data mining,1996年,1页
  • 3Salton, G. Automatic Text Processing. Addison-Wesley Publishing Company, 1988.
  • 4Hartigan, J.A. Clustering Algorithms, Yale University, John Wiley&Sons, New York, London, 1975.
  • 5Kleinberg, J. Authoritative sources in a hyperlinked environment, In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms. 1998. http://www.cs.cornell.edu/home/kleinber/.
  • 6Dumais, S.T. LSI meets TREC: a status report. In: Harman, D., ed. Proceedings of the 1st Text Retrieval Conference (TREC1). National Institute of Standards and Technology, 1993. 137~152.
  • 7Dumais, S.T. Latent semantic indexing (LSI) and TREC-2. In: Harman, D., ed. Proceedings of the 2nd Text Retrieval Conference (TREC2). National Institute of Standards and Technology, 1994. 105~116.
  • 8苑森淼,程晓青.数量关联规则发现中的聚类方法研究[J].计算机学报,2000,23(8):866-871. 被引量:26

共引文献79

同被引文献18

  • 1朱永泰,王晨,洪铭胜,汪卫,施伯乐.ESPM——频繁子树挖掘算法[J].计算机研究与发展,2004,41(10):1720-1727. 被引量:18
  • 2欧阳一鸣,陈敏,刘红樱,胡学钢.Web挖掘中发现用户访问模式算法的改进与分析[J].模式识别与人工智能,2005,18(6):728-734. 被引量:2
  • 3COOLEY R,SRIVASTAVA J.Data preparation for mining World Wide Web browsing patterns[J].Journal of Knowledge and Information Systems,1999,1(1):5-32.
  • 4LIU B.Web data mining:Exploring hyperlinks,contents,and usage data[M].Berlin:Springer,2007.
  • 5NANOPOULOS A,MANOLOPULOS Y.Mining patterns from graph traversals[J].Data & Knowledge Engineering,2001,37:243-266.
  • 6PEI J,HAN J W,MORTAZAVI-ASL B,et al.Mining access patterns efficiently from web logs[C]∥ Proceedings of the 4th PAKDD.Kyoto,Japan:Springer,2000:396-407.
  • 7FIOT C,LAURENT A,TEISSEIRE M.Web access log mining with soft sequential patterns[C]∥ Proceedings of the 7th International FLINS Conference on Applied Artificial Intelligence.Genova,Italy:World Scientific,2006.
  • 8ZHOU B Y,HUI S C,FONG A C M.Efficient sequential access pattern mining for Web recommendations[J].International Journal of Knowledge-based and Intelligent Engineering Systems,2006,10(2):155-168.
  • 9ASAI T,ABE K,KAWASOE S.Efficient substructure discovery from large semi-structured data[C]∥ Proceedings of the 2nd SIAM Int′l Conference on Data Mining.Arlington:IEEE,2002:158-174.
  • 10ZAKI M J.Efficiently mining frequent trees in a forest[C]∥ Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Edmonton:IEEE,2002:71-80.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部