期刊文献+

采用全矢量有限元法设计光子晶体光纤 被引量:2

Design of Photonic Crystal Fiber Using Full Vector Finite Element Method
原文传递
导出
摘要 阐述了基于光子晶体光纤(PCF)的光纤参量放大器(FOPA)的工作原理,对FOPA所需的PCF特性进行了讨论和设计。采用带混合节点/棱边元三角形单元的全矢量有限元法(FEM),计算了PCF中非线性系数、色散斜率和色散零点与空气孔半径、孔间距和空气填充比等结构参数间的关系。计算结果表明在确保PCF光纤高非线性的前提下,通过灵活设计PCF的结构参数就可以实现色散控制,得到PCF的超宽波长范围内可调的零色散波长、近零超平坦色散和极低的色散斜率,从而为FDPA获得高增益、宽带宽等性能创造必要前提。 The operating principle is analysed for optical parametric amplifiers based on photonic crystal fiber(PCF). The properties of photonic crystal fiber needed for optical parametric amplifier are discussed and designed. Using full vector finite element method(FEM) with hybrid nodal/edge elements with triangular shape, the relationship between the properties of PCF such as nonlinearhy,dispersion slope and zero-dispersion wavelength and of PCF structure parameters of PCF such as the diameter of the air holes,the hole pitch and the air filling factor is investigated. The simulation results show that while keeping high nonlinearity,zero-dispersion wavelength that is adjustable over large wavelength range,near-zero ultra-flattened dispersion and dispersion slope can be achieved by flexibly designing PCF' structure parameters, in such a way high gain and wide bandwidth of FOPA can be achieved.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2007年第1期30-35,共6页 Journal of Optoelectronics·Laser
基金 国家自然科学基金资助项目(60578043) 北京市教育委员会共建资助项目(XK100130537)
关键词 光子晶体光纤(PCF) 光纤参量放大器(FOPA) 棱边元 有限元法(FEM) 四波混频(FWM) photonic crystal fiber (PCF) fiber optical parametric amplifier (FOPA) edge element finite element method(FEM) four-wave mixing(FWM)
  • 相关文献

参考文献9

  • 1LOU Shu-qin, JIAN Wei. A novel high birefringence photonic crystal fiber[J] . Journal of Optoelectronics · laser (光电子·激光). 20O0 5,16(11) :1265-1269. (in Chines)
  • 2LOU Shu-qin, WANG Zhi, REN Guc-bin, et al. Polarization properties of elliptical core photonic crystal fiber[J]. Journal of Optoelectronics · Laser(光电子·激光),2004,15(9) :I021-I025. (in Chinese).
  • 3Agrawal G P. Nonlinear Fiber Optics [M]. 3nd. San Diego:Academic Press,2001.46-46.
  • 4Wu Tzong-Lin,Ohao Chia-Hsin. A novel ultraflattened dispersion photonic crystal fiper[J]. IEEE Photonics Technology Letters2005, 17(1) :67-69.
  • 5Marhic M E, Kagi N,Chiang T K. Broadband fiber optical parametric amplifiers[J]. OPt Lett ,1996,21(8) :573-575.
  • 6Midrio M,Singh M P,Someda C G. The space filling mode of heley fibers:an analytical vectorial solution[J]. J Lightwave Technol, 2000,18(7) :1031-1037.
  • 7Hansryd J, Andrekson P A. Broad-band continuous-wave-pumped fiber optical parametric amplifier with 49 dB gain and wavelength-conversion efficiency[J]. IEEE Photon Technol Lett2001, 13(3) :194-196.
  • 8Lee J F,Sun D K,Cendes Z J. Tangential vector finite elements for electromagnetic field computation[J]. IEEE Trans Magetics, 1991,27(5) :4032-4035.
  • 9Richford W B. A First Course in the Finite Element Methed[M].Homewood IL:Richard D,1990.

同被引文献23

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部