期刊文献+

基于典型相关分析的独立分量分析对照函数构建方法研究 被引量:1

Study of Contrast Function Construction on Independent Component Analysis Based on Canonical Correlation Analysis
下载PDF
导出
摘要 本文根据典型相关分析的特征,并结合近年来的研究热点———核学习的有关理论,提出了一种在可再生核Hilbert空间为独立分量分析构建对照函数的新方法,并证明其与以前提出的普通对照函数一样,具备统计相关测度函数所需的满意数学特征.通过对各种源分布的分离结果仿真表明,该方法比现有的其他方法具有更好的鲁棒性和灵活性. By combining the relational theories of kernel learning, which is currently hot problem of machine learning in recent years, with some features of canonical correlation analysis, this contribution suggests new methods of constructing contrast functions for independent component analysis in reproducing kernel Hilbert space. It is justified the contrast function is with all expected attributes of statistical metric about dependence just as same as normal contrast function presented before. The results of simulation, operated on various probability functions of signal source distribution, prove this method to outperform many of the presently known algorithms in robust and flexible properties.
出处 《传感技术学报》 CAS CSCD 北大核心 2006年第6期2591-2595,2599,共6页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金资助(30470461)
关键词 典型相关分析 可再生核Hilbert空间 对照函数 独立分量分析 canonical correlation analysis contrast functions reproducing kernel Hilbert space independent component analysis
  • 相关文献

参考文献8

  • 1Hyvarinen A,Karhunen J,and Oja E.Independent Component Analysis[M].New York:John Wiley & Sons,2001.
  • 2Bell A Jand Sejnowski T J.An Information-Maximization Approach To blind Separation and Blind Deconvolution[J].Neural Comput,1995,7:1129-59.
  • 3Hyvarinen A and Oja E.Lndependent Component Analysis:Algorithms and Applications[J].Neural Networks,2000,13:411-430.
  • 4Amari S,Cichocki A,and Yang H H.A New Learning Algorithm for Blind Signal Separation[C]//Advances in Neural Information Processing Systems,vol.8,D.S.Touretzky,MC Mozer,and M E Hasselmo,Eds.Cambridge,MA:MIT Press,1996:757-763.
  • 5马振华.现代应用数学手册-概率统计与随机过程卷[M].北京:清华大学出版社,2000:173.
  • 6Carmeli C,Vito E D,and Toigo A.Reproducing Kernel Hilbert Spaces and Mercer Theorem[EB/OL].2005:http://arxiv.org/abs/math.FA/0504071
  • 7Müller K-R,Mika S and Rátsch G,et al.An Lntroduction to Kernel-Based Learning Algorithms[J].IEEE Transactions on Neural Networks,May,2001,12(2):181-201,.
  • 8Scholkopf B,Smola A,and Müller K-R.Nonlinear Component Analysis as a Kernel Eigenvalue Problem[J].Neural Computation,1998,10(3):1299-1319.

共引文献2

同被引文献15

  • 1徐亚丹,王俊,赵国军.检测掺假牛奶的电子鼻传感器阵列的优化[J].传感技术学报,2006,19(4):957-962. 被引量:21
  • 2吴坚,刘军,傅敏,李光.一种基于电子舌技术的绿茶分类方法[J].传感技术学报,2006,19(4):963-965. 被引量:29
  • 3Tian Shiyi, Deng Shaoping, Chen Zhongxiu. Multifrequency Large Amplitude Pulse Voltammetry: A Novel Electrochemical Method for Electronic Tongue[ J]. Sensors and Actuators B, 2007, 123: 1049 - 1056.
  • 4Vlasov Y G, Legin A V, Rudnitskaya A M, et al. Electronic Tongue-New Analytical Tool for Liquid Analysis on the Basis of Non-Specific Sensors and Methods of Pattern Recognition [ J ]. Sensors and Actuators B, 2000, 65:235 -236.
  • 5Ciosek P, Wroblewski W. Performance of Selective and Partially Selective Sensors in the Recognition of Beverages [ J ]. Talanta, 2007, 71:738 -746.
  • 6Ciosek P, Wroblewski W. The Analysis of Sensor Array Data with Various Pattern Recognition Techniques [ J ]. Sensors and Actuators B, 2006, 114:85 -93.
  • 7Ciosek P, Wroblewski W. Miniaturized Electronic Tongue with an Integrated Reference Microelectrode for the Recognition of Milk Samples [J]. Talanta, 2008, 76:548-556.
  • 8Ciosek P, Brudzewski K, Wroblewski W. Milk Classification by Means of an Electronic Tongue and Support Vector Machine Neural Network[ J ]. Measurement Science and Technology, 2006, 17: 1379 - 1384.
  • 9GB/T5409-85.中华人民共和国国家标准牛乳检验方法[S].
  • 10张夏宾,王晓萍.基于调幅脉冲扫描法的电子舌及其在酒类识别中的应用[J].传感技术学报,2007,20(3):489-492. 被引量:10

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部