摘要
图G的孤立韧度定义为I(G)=min{|S|/i(G-S)|S■V(G),i(G-S)≥2},若G不是完全图;否则,令I(G)=|V(G)|-1.本文证明了:若G的最小度满足δ(G)≥a+n以及孤立韧度I(G)≥a-1+(a+2n)/b,其中a,b,n都是非负整数且1≤a<b.则对G的任意一个n条边的对集M,G-M有[a,b]-因子存在.同时对边可消去图中的星因子的存在性也进行了讨论.
The isolated toughness of G is defined as I(G) = min {|S|/i( G - S)|Slohtain in V(G), i( G - S) ≥2}; otherwise, I(G) = | V(G) | - 1. It is proved that if G is a graph with δ(G) ≥ a + n and the isolated toughness/(G) ≥a-1+a+2n/b , where 1 ≤ a 〈 b. and n are non - negative integers. Then for any matching M with size n, G - M has [ a, b ] - factors. A sufficient condition for the star- factor in edge - deletion graph is also investigated.
出处
《山东师范大学学报(自然科学版)》
CAS
2007年第1期5-7,22,共4页
Journal of Shandong Normal University(Natural Science)
基金
国家自然科学基金(10471078)
山东省"泰山学者建设工程"基金资助项目
关键词
孤立韧度
[A
B]-因子
星因子
isolated toughness
[ a, b ] - factor
star- factor