期刊文献+

含弱互补函数的可行的无子规划算法 被引量:1

A QP-Free Feasible Method with Slack NCP Function
下载PDF
导出
摘要 用弱互补函数来代替F-B互补函数,由此而构建出四个光滑的线性方程.还修改了第二个线性方程,从而保证了迭代点的可行性和目标函数的下降性.采用修改的拟牛顿算法修正,在没有要求子矩阵Hk是一致正定的条件下,证明该算法具有全局收敛性和局部超线性收敛性.算例表明,该算法具有很好的应用前景. A slack nonlinear complementarity problem (NCP) function is used to replace the F-B NCP function, and the second linear system is modified to ensure the descent of the search direction and the feasibility of the iteration. The method is based on a smooth equation reformulation of the KKT optimality condition. In particular, this method is globally convergent without assuming the uniformly positive definiteness of the submatrix obtained by the Newton or Quasi Newton method. It is also proved that the method has super linear convergence rate. Some preliminary numerical results indicate that this new QP-free feasible method is of promising feasibility.
作者 桂胜华 周岩
机构地区 同济大学数学系
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第2期262-266,共5页 Journal of Tongji University:Natural Science
基金 国家自然科学基金资助项目(10571137) 上海市教委科研基金资助项目(05RZ12)
关键词 约束非线性规划 K—K—T点 弱非线性互补函数 超线性收敛 constrained optimization KKT point slack nonlinear complementarity problem function superlinear convergence
  • 相关文献

参考文献13

  • 1Harker P T,Pang J S.Finite-dimensional variational and nonlinear complementarity problems:a survey of theory,algorithm and applications[J].Mathematical Programming,1990,48:161.
  • 2Fukushima M.Merit functions for variational and complementarity problems[M]∥Di Pillo,Giannessi F.Nonlinear optimization and applications.New York:Plenum Press,1996:155-170.
  • 3Ferris M C,Pang J S.Engineering and economic applications of complementarity problems[J].SIAM Review,1997,39:669.
  • 4Facchinei F,Kanzow C.A nonsmooth inexact Newton method for the solution of large nonlinear complementarity problems[J].Mathematics Programming,1997,76:493.
  • 5Sun D.A regularization Newton method for solving nonlinear complementarity problems[J].Applied Mathematics and Optimization,1999,40:315.
  • 6Herskovits J N.A two-stage feasible direction algorithm for nonlinear constrained optimization[J].Math Programming,1986,36:19.
  • 7Panier E R,Tits A L,Herskovits J N.A QP-free,globally,locally superlinear convergent method for the inequality constrained optimization problems[J].SIAM J Control Optim,1988,36:788.
  • 8Urban T,Tits A L,Lawrence C T.A primal-dual interior-point method for nonvex optimization with multiple logarithmic barrier parameters and with strong convergence properties[R].Department of Electrical Engineering and Institute for Systems Research,University of Maryland,1998.
  • 9Herskovits J N.Feasible direction interior-point technique for nonlinear optimization[J].J Optim Theory Appl,1998,99:121.
  • 10Qi H,Qi L.A new QP-free,globally V,locally superlinear convergent feasible method for the solution of inequality constrained optimization problems[J].SIAM J Optim,2000(11):113.

二级参考文献14

  • 1桂胜华,张倩,邢丽,徐玲.弱互补函数的拉格朗日-拟牛顿法[J].上海第二工业大学学报,2005,22(5):21-27. 被引量:8
  • 2袁亚湘 孙文瑜.最优化理论与方法[M].北京:科学出版社,2001..
  • 3Panier E R, Tits A L and Herskovits J N. A QP-free, globally, locally superlinear convergent method for the inequality constrained optimization problems[J], sIAM J. Control Optim., 1988, 36:788-811.
  • 4Hock W and Schittkowski K. Test Example for Nonlinear Programming Codes, Lecture Notes in Econom and Math. Systems[M], Berlin: Springer-Verlag, 1981.
  • 5Pu D and Tian W. A class of Broyden Algorithms with revised search direction[J]. Asia- Pacific J. of Operation Research, 1997, 14:93--109.
  • 6Pu D and Tian W. Gallobally inexact generalized Newton methods for nonsmooth equation [J]. J.of Computational and Applied Mathematics,2002, 138: 37--49.
  • 7Pu D, Gui S and Tian W. A class of revised Broyden algorithms without exact.line search[J]. J, computational Mathematics. 2004. (22): 11--20.
  • 8Pu D and Zhang J. An inexact generalized Newton method for second order C-differentiable optimization[J]. J. of Computational and Applied Mathematics, 1998,93:107--122.
  • 9Qi H and Qi L. A New QP-free, globally V, locally superlinear convergent feasible method for the solution of inequality constrained optimization problems[J]. SIAM J. Optim., 2000,11: 113--132.
  • 10Eliane R. Panier,André L. Tits.On combining feasibility, descent and superlinear convergence in inequality constrained optimization[J].Mathematical Programming (-).1993(1-3)

共引文献11

同被引文献13

  • 1桂胜华,张倩,邢丽,徐玲.弱互补函数的拉格朗日-拟牛顿法[J].上海第二工业大学学报,2005,22(5):21-27. 被引量:8
  • 2Harker P T, Pang J S. Finite-dimensional variational and nonlinear complementarity problems:A survey of theory, algorithm and applications[J]. Mathematical Programming, 1990,48 : 161.
  • 3Fuknshima M. Merit functions for variational and comple mentarity problems[M]//Di Pillo, Giannessi F. Nonlinear Optimization and Applications. New York: Plenum Press, 1996:155 - 170.
  • 4Ferrls M C, Pang J S. Engineering and economic applications of complementarity problems[ J ]. SIAM Review, 1997,39: 669.
  • 5Facchinei F, Kanzow C. A nonsmooth inexact Newton method for the solution of large nonlinear complementarity problems[J]. Mathematics Programming, 1997,76: 493.
  • 6Sun D. A regularization Newton method for solving nonlinear complementarity problems [ J ]. Applied Mathematics and Optimization, 1999,40:315.
  • 7Herskovits J N. A two-stage feasible direction algorithm for non- linear constrained optimization [ J ]. Math Programming, 1986, 36:19.
  • 8Partier E R, Tits A L, Herskovits J N. A QP- free, globally, loeally superlinear convergent method for the inequality constrained optimization problems [ J ]. SlAM J Control Optim, 1988,36: 788.
  • 9Urban T,Tits A L, Lawrence C T. A primal-dual interior-point method for nonvex optimization with multiple logarithmic barrier parameters and with strong oonvergenee properties[R]. IS.Ⅱ:Department of Electrical Engineering and Institute for Systems Research, University of Maryland, 1998.
  • 10Herskovits J N. Feasible direction interior- point technique for nonlinear optimization[ J ]. J Optim Theory Appl, 1998,99 : 121.

引证文献1

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部