期刊文献+

太湖梅梁湾水域蓝藻水华前与水华末期细菌群落结构的变化 被引量:17

Changes in Bacterial Community Structure During Preceding and Degraded Period of Cyanobacterial Bloom in a Bay of the Taihu Lake
下载PDF
导出
摘要 通过16S rRNA克隆文库研究了太湖梅梁湾2004年3月和9月表层水样中细菌组成的变化,发现在蓝藻水华前与水华末期的菌群结构存在差异,特别是最优势的细菌发生了很大变化.3月水样中的克隆子主要与Bacteroidetes(42.7%)、β-Proteobacteria(18.4%)、α-Proteobacteria(16.5%)和Actinobacteria(16.5%)相关,9月水样中的克隆子主要与Cyanobacteria(28.8%)、β-Proteobacteria(25.0%)、Actinobacteria(17.3%)和α-Proteobacteria(15.4%)相关.此外,在水华末期(9月)的细菌组成更为多样性,有11个类群;而未发生水华时(3月)的细菌组成只有7个类群.同相关研究比较发现,α、β-Proteobacteria,Actinobacteria均为太湖中的常见菌群,其分布较为广泛;而γ-Proteobacteria和Firmicutes多出现于太湖的沉积物中,在水体中较少出现;属于Bacteroidetes这一类群的浮游细菌在湖水中很丰富.所研究水域中发现的很多细菌的16SrRNA基因与出现在许多不同的淡水生境,包括国外贫营养湖、中营养湖和富营养湖中细菌的系统关系密切,还发现大量源于长江的克隆子,很少有与海洋中细菌相似的序列(除Bacteroidetes门的成员外). Diversity of bacterioplankton in March and September (2004) in the eutrophic Meiliang Bay was determined by 16S rRNA gene sequences. Result showed that community composition, especially the most dominant bacteria during preceding and degraded period of Cyanobacterial bloom was different. Clones in the March clone library (M3) were mostly affiliated with Bacteroidetes (42. 7% ), β-Proteobacteria ( 18.4% ) , α-Proteobacteria ( 16. 5% ) and Actinobacteria ( 16. 5% ), while clones in the September clone library (M9) were mainly affiliated with cyanobacteria (28.8%), β-Proteobacteria (25.0%), Actinobacteria (17.3%) and α-Proteobacteria (15.4%). Greater diversity in sequence composition was found in M9 (11 clusters) than that in M3 (7 clusters). Compared with related study, α-Proteobacteria, β-Proteobacteria and Actinobacteria were widely found in the Taihu Lake, whereas γ-Proteobacteria and Firmicutes were more frequently detected in sediments, and Bacteroidetes were abundant in water. Most 16S rRNA gene sequences retrieved from the two libraries were closely related to freshwater bacteria in different aquatic ecosystems including oligo-, meso- and eu-trophic lakes. A large number of clones were originated from the Yangtze River. The sequences represented in marine habitats were rarely found except the members of Bacteroidetes. Fig 2, Tab 3, Ref 21.
出处 《应用与环境生物学报》 CAS CSCD 北大核心 2007年第1期97-103,共7页 Chinese Journal of Applied and Environmental Biology
基金 国家自然科学基金资助项目(No.50278053 20377030)~~
关键词 太湖梅梁湾 富营养化 细菌多样性 16S RDNA Meiliang Bay, Taihu Lake: eutrophication bacterial diversity 16S rDNA
  • 相关文献

参考文献21

  • 1Eiler A,Bertilsson A.Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes.Environ Microbiol,2004,6 (12):1228~1243
  • 2Trusova MY,Gladyshev MI.Phylogenetic diversity of winter bacterioplankton of eutrophic Siberian reservoirs as revealed by 16S rRNA gene sequence.Microb Ecol,2002,44:252~259
  • 3Azam F,Fenchel T,Field JG,Gray JS,Meyer-Reil LA,Thingstad F.The ecological role of water-column microbes in the sea.Ma Ecol Prog Ser,1983,10:257~263
  • 4Degans H,Z llner E,der Gucht KV,De Meester L,J rgens K.Rapid Daphnia-mediated changes in microbial community structure:an experimental study.FEMS Microbiol Ecol,2002,42:137~149
  • 5陈荷生,石建华.太湖底泥的生态疏浚工程──太湖水污染综合治理措施之一[J].水资源保护,1998,14(3):11-16. 被引量:39
  • 6秦伯强,罗潋葱.太湖生态环境演化及其原因分析[J].第四纪研究,2004,24(5):561-568. 被引量:74
  • 7奥斯伯F 金斯顿RE.精编分子生物学实验指南[M].北京:科学出版社,1998.29-108.
  • 8Saitou N,Nei M.The neighbor-joining method:a new method for reconstructing phylogenetic trees.Mol Biol Ecol,1987,4:406~425
  • 9Hill TCJ,Walsh KA,Harris JA,Moffett BF.Using ecological diversity measures with bacterial communities.FEMS Microbiol Ecol,2003,43:1~11
  • 10Zhu F,Wang S,Zhou P.Flavobacterium xinjiangense sp.nov.and Flavobacterium omnivorum sp.nov.,novel psychrophiles from the China No.1 glacier.Int J Syst Evol Microbiol,2003,53:853~857

二级参考文献21

  • 1[15]Li Wenchao. Utilization model of aquatic macrophyte for fishery inChinese shallow lakes. Ecological Engineering, 1998, 11: 61~72
  • 2Thompson J D, Gibson T J, Plewniak F. The ClustalX windows inferface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 1997, 24 : 4876 -4882.
  • 3Kimura M. A simple method for estimating evolutionary rates bases ubstitutions through comparative studies of nucleotide sequences. J Mol Evol, 1980, 16:111 - 120.
  • 4Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 1987, 4:406 - 425.
  • 5McCaig A E, Glover L A, Prosser J I. Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Appl Environ Microbiol, 1999, 65:1721 -1730.
  • 6Hill T C J, Walsh K A, Harris J A. Using ecological diversity measures with bacterial communities. FEMS Microbiol Ecology, 2003,43:1 - 11.
  • 7Gonzalez J M, Moran M A. Numerical dominance of a group of marine bacteria in the a-subclass of the class Proteobacteria in coastal seawater. Appl Environ Microbiol, 1997, 63:4237 - 4242.
  • 8Mergaert J, Verhelst A, Cnockaert M C, et al. Characterization of facultative oligotrophic bacteria from polar seas by analysis of their fatty acids and 16S rDNA sequences. Syst Appl Microbiol, 2001, 24(1):98 - 107.
  • 9Haglund A L, Tomblom E, Bostrom B, et al. Large differences in the fraction of active bacteria in plankton, sediments, and biofilm.Microbial Ecology, 2002, 43:232 - 241.
  • 10Button D K, Schut F, Quang P, et al. Viability and isolation of typical marine oligobacteria by dilution culture: theory, procedures and initial results. Appl Environ Microbiol, 1993, 59:881 - 891.

共引文献267

同被引文献250

引证文献17

二级引证文献123

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部