期刊文献+

四阶Duffing方程周期解的存在性 被引量:1

Existence of Periodic Solutions for Fourth Order Duffing Equations
下载PDF
导出
摘要 利用拓扑度理论,证明了四阶Duffing方程x(4)+x′+g(x)=e(t)周期解的存在性. The existence of periodic solutions of fourth order Dufl'ing equations x^(4)+x'+g(x)=e(t) is proved via the topological degree theory.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2007年第2期219-220,共2页 Journal of Jilin University:Science Edition
基金 吉林大学研究生创新基金(批准号:理学301021)
关键词 DUFFING方程 周期解 拓扑度 : Duffing equation periodic solution topological degree
  • 相关文献

参考文献6

  • 1刘文斌,李勇.高阶Duffing方程周期解的存在性[J].数学学报(中文版),2003,46(1):49-56. 被引量:6
  • 2Huang Xiankai.ON THE EXISTENCE OF PERIODIC SOLUTIONS FOR THE THIRD-ORDER NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS[J].Applied Mathematics(A Journal of Chinese Universities),1999,14(2):125-130. 被引量:5
  • 3DING Tong-ren,Iannacci R,Zanolin F.Existence and Multiplicity Results for Periodic Solutions of Semilinear Duffing Equations[J].J Diff Equs,1993,105:364-409.
  • 4Gaines R E,Mawhin J L.Coincidence Degree and Nonlinear Differential Equations[M].Lecture Notes in Math,Vol.568.Berlin:Springer-Verlag,1977.
  • 5SHEN Zu-he.On the Periodic Solution to the Newtonian Equation of Motion[J].Nonl Anal,1989,13(2):145-149.
  • 6QIAN Ding-bian,YOU Jian-gong.Periodic Solutions of Forced Second Order Equations with the Oscillatory Time Map[J].Diff Integral Equ,1993,6(4):793-806.

二级参考文献1

共引文献7

同被引文献13

  • 1GUO Zhi-ming, YU Jian-she. Multiplicity Results for Periodic Solutions to Delay Differential Equations via Critical Point Theory [J]. J Differential Equations, 2005, 218(1): 15-35.
  • 2HAN Xiao, JI Shu-guan, MA Zhong-hua. On the Existence and Multiplicity of Positive Periodic Solutions for First-Order Vector Differential Equation[J]. J Math Anal Appl, 2007, 329(2) : 977-986.
  • 3JI Shu-guan. Time Periodic Solutions to a Nonlinear Wave Equation with X-Dependent Coefficients [J]. Calc Vat Partial Differential Equations, 2008, 32(2) 137-153.
  • 4JI Shu-guan, LI Yong. Time Periodic Solutions to the One-Dimensional Nonlinear Wave Equation [J]. Arch Ration Mech Anal, 2011, 199(2).. 435-451.
  • 5JI Shu-guan, LI Yong. Periodic Solutions to One-Dimensional Wave Equation with X-Dependent Coefficients [J]. J Differential Equations, 2006, 229(2): 466-493.
  • 6LIANG Shu-qing. Existence of Non-collision Periodic Solutions for Second Order Singular Dynamical Systems [J]. Topoi Methods Nonlinear Anal, 2010, 35(1) : 127 137.
  • 7JI Shu-guan, SHI Shao-yun. Periodic Solutions for a Class of Second-Order Ordinary Differential Equations [J]. J Optim Theory Appl, 2006, 130(1): 125-137.
  • 8Carath6odory C. Calculus of Variations and Partial Differential Equations [M]. New York: Chelsea Publishing Company, 1982.
  • 9JI Shu-guan, LIU Zhen-xin, SHI Shao-yun. Carathfodory's Method for a Class of Second Order Differential Equations on the Half-Line [J]. J Math Anal Appl, 2007, 325(2): 1306-1313.
  • 10Carlson D A. Carathodorys Method for a Class of Dynamic Games [J]. J Math Anal Appl, 2002, 276(2): 561-588.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部