期刊文献+

用半离散中心迎风格式计算一维浅水方程

Numerical solution of one-dimensional shallow water equations by semi-discrete central-upwind scheme
下载PDF
导出
摘要 将半离散中心迎风数值通量和三阶WENO重构结合起来,由此得到了一种求解一维浅水方程的高分辨率数值方法.对底坡项的离散保证了计算方法的和谐性,离散摩阻项的方法简单有效.时间的离散采用保持强稳定性质的Runge-Kutta方法.应用文中方法对几个典型算例进行检验计算,结果表明本文方法健全,而且对激波具有较高的分辨率. A high-resolution method for solving one-dimensional shallow water equations is presented by combing the semi-discrete central-upwind numerical flux with the third-order weighted essentially non-oscillatory (WENO) reconstruction. The discretization of bottom topography assures well-balanced approximation and the discretization of friction slop is simple and effective. The third-order strong stability preserving Runge-Kutta method is used for time discretization. Validity of several typical samples show that this method is effective and has high precision for shock waves.
出处 《水利水运工程学报》 CSCD 北大核心 2007年第1期7-11,共5页 Hydro-Science and Engineering
基金 国家自然科学基金资助项目(60134010)
关键词 一维浅水方程 中心迎风格式 WENO重构 one-dimensional shallow water equations central-upwind scheme WENO reconstruction
  • 相关文献

参考文献2

二级参考文献45

  • 1EF Tom. Riemann solvers and numerial methods for fluid dynamics[M]. Berlin: Springer, 1999.
  • 2Marshall E, Mendez R. Computational aspects of the random choice method for shallow water equations[J]. J Comput Phys, 1981, 39:1 - 21.
  • 3EF Toro. Shock-capturing methods for flee-surface shallow flows[M]. Chichester: John Wiley & Sons, 2001.15- 165.
  • 4Glaister P. Approximate riemann solutions of the shallow water equations[J]. Journal of Hydraulic Research, 1988, 26(3): 293- 306.
  • 5Alcrudo F, Garcia-navarm P, Jose-Maria Saviron. Flux difference splitting for 1D open channel flow equations[J]. Int J Numer Meth Flu0ids,1992, 14: 1009-1018.
  • 6EF Tom. Riemann problems and the WAF method for solving the two-dimensioanl shallow water equations[J]. Phil Trans R Soc, Lond A,1992, 338 : 43 - 67.
  • 7Fraccamllo L, EF Toro. Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problem[J].Journal of Hydraulic Research, 1995, 33(6) : 843 - 863.
  • 8Alcrudo F, Garcia-Navarro P. A high-resolution Godunov-type scheme in finite volumes for 2-D shallow-water equations[J]. Int J Numer Meth Fluids, 1993, 16: 489-505.
  • 9Hui WH, Kudriakov S. Computationa of the shallow water equations using the unified coordinates[J]. SIAM J Sci Comput, 2002, 23:1615-1 654.
  • 10Fujihara M, Borthwick AGL. Godunov-Type Solution of Curvilinear Shallow-Water Equations[J]. Journal of Hydraulic Engineering, 2000,126(11) : 827- 836.

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部