期刊文献+

基于SVM的滚动轴承工作状态检测

Fault Diagnosis of Ball Bearing Based on SVM Classifier
下载PDF
导出
摘要 支持向量机是以统计学习理论为基础发展起来的新的通用学习方法,较好地解决了小样本、高维数、非线性等学习问题。本文提出了一种基于多级支持向量机分类器的滚动轴承工作状态识别方法。该方法通过时域特征参数对原信号进行特征提取,不仅计算简单,而且不考虑滚动轴承的型号和转速。试验表明这种方法具有很好的分类能力。 Support Vector Machine (SVMs) is a novel machine learning method based on statistical learning theory (SLT). SVM is powerful for the problem with small sample, nonlinear and high dimension. A multilayer SVM classifier is applied hero to fault diagnosis of ball bearing. This method gets the preference from time zone. It is simple for calculating. Furthermore, you need not care for the class and speed of the ball bearing. It has been tested that it can have good classification ability.
作者 牛军 宋京伟
出处 《计算机与现代化》 2007年第3期25-27,30,共4页 Computer and Modernization
关键词 支持向量机 多类问题 滚动轴承 故障诊断 support vector machines multi-class problem ball bearing fault diagnosis
  • 相关文献

参考文献3

二级参考文献14

  • 1Cherkassky V, Mulier F. Learming from Data: concepts,Therory and Methods. NY: John Viley&Sons, 1997.
  • 2James E. Berry. How To Track Rolling Element Bearing Health With Vibration Signature Analysis. Sound and Vibration [J]. November, 1991: 24-35.
  • 3Allwein E, Schapire R E Singer Y. Reducing muhiclass to binary: a unifying approach for margin classifiers [A]. Langley P. Proceedings of the 17th International Conference on MachineLearning [C]. California: Morgan Kaufinann, 2000: 9- 16.
  • 4Weston J, Watldns C. Multi - class support vector machine[R]. Technical report, University of London, 1998, CSD-TB-98 - 04.
  • 5Guo Guodong, Stan Z Li, Kap Luk Chan. Support vector machine for face recognition. Image and Vision Computing, 2001,19(4): 631~638
  • 6Daniel J Sebald, James A Bucklew. Support vector machine techniques for nonlinear equalization. IEEE Trans. on Signal Processing, 2000, 48(11): 3217~3226
  • 7Harris Drucker, Wu Donghui, Vladimir N Vapnik. Support vector machines for spam categorization. IEEE Trans. on Neural Networks, 1999, 10(5): 1048~1054
  • 8Rychetsky M, Ortmann S, Glesner M. Support vector approaches for engine knock detection. International Joint Conference on Neural Networks. IJCNN 99. Washington, USA, 1999. 969~974
  • 9Vladimir N Vapnik. The nature of statistical learning theory. New York, USA:Springer-Verlag, 1995.
  • 10Chih-Wei Hsu, Chih-Jen Lin. A Comparison of methods for multiclass support vector machines. IEEE Trans. on Neural Networks, 2002, 13(2): 415~425

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部