期刊文献+

基于支持向量机体温检测模型的活性判别算法 被引量:1

Liveness check algorithm based on body temperature measurement model using SVM
下载PDF
导出
摘要 提出了一种基于支持向量机体温检测模型的活性判别算法。该算法通过大量的人体前额和腋下温度的样本来训练基于支持向量机的体温检测模型,然后在活性判别过程中,通过检测被识别人的体温来完成活性判别的过程。由于人脸照片的温度不可能与正常人的体温相同,所以照片就被成功的排除在了人脸识别系统的外面,从而提高了人脸自动识别系统的安全性,而且在活性判别过程中,被识别人不需要做表情或者是姿态的变化来配合识别,极大的方便了被识别者,增强了人脸识别系统的方便性。 A liveness check algorithm based on body temperature measurement model using SVM (support vector machine) is proposed. The body temperature measurement model is trained by a large number of examples with forehead and oxter temperatures. And in the liveness check procedure, the users' body temperature is measured to get through the liveness check. Because the temperature of face photos can not be the same as the body temperature of the normal person, the photos are successfully stopped before entering the face recognition stage. That raised the securities of face automatic recognition system. And in the liveness check procedure, the users do not need to do the change of the expression or the posture cooperates with recognition. The users use this system conveniently, and the conveniences of face recognition systems is strengthened.
出处 《计算机工程与设计》 CSCD 北大核心 2007年第3期642-644,共3页 Computer Engineering and Design
关键词 人脸识别 活性判别 体温检测模型 支持向量机 样本 face recognition liveness check body temperature measurement model support vector machine example
  • 相关文献

参考文献11

  • 1Yongsheng Gao,Maylor K H Leung.Face recognition using line edge map[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(6):764-779.
  • 2Du Cheng,Su Guangda,Lin Xingguang.Face recognition across different poses using a single 2D model view[R].Changsha,Hunan,China:IEEE International Conference on Robotics,Intelligent System and Signal Processing,2003.721-725.
  • 3Yuequan Luo,Guangda Su.A fast method of lighting estimate using multi-linear algebra[R].Sinobiometrics,LNCS 3338,2004.205-211.
  • 4Alexander M Bronstein,Michael M Bronstein,Ron Kimmel.Three-dimensional face recognition[J].International Journal of Computer Vision,2005,64(1):5 -30.
  • 5邓刚,曹波,苗军,高文,赵德斌.基于支持向量机眼动模型的活性判别算法[J].计算机辅助设计与图形学学报,2003,15(7):853-857. 被引量:13
  • 6Rober W F,Ulrich D BiolD.A multimodal biometric identification system[J].IEEE Computer,2000,33(2):64-68.
  • 7Ratha N K,Connell J H,Bolle R M.Enhancing security and privacy in biometrics-based authentication systems[J].IBM System Journal,2001,40(3):614-634.
  • 8Ma Yong,Ding Xiaoqing.Face detection based on hierarchical support vector machines[C].16th International Conference onPattern Recognition,2002.222-225.
  • 9TH-IR201S红外温度检测系统使用说明书[DB/OL].http:∥www.thunis.com/thunis/configure/hp/pdf/TH-IR201S.pdf.
  • 10邓乃杨,田英杰.数据挖掘中的新方法:支持向量机[M].北京:科学出版社,2004.

二级参考文献39

  • 1容观澳.计算机图像处理[M].清华大学出版社,2000.269-288.
  • 2Vapnik V. The nature of statistical learning theory. Springer,New York, 1995.
  • 3Turk M, Pentland A. EigenIaces for recognition. J. Cognitive Neuroscience, 1991,3(1) ; 71~86.
  • 4Kirby M,Sirovich L.Application of the Karhunen-Loève Procedure fot the characterization of human faces.IEEE Trans.on Pattern Analysis and Machine Intelligence,1990,12(1):103~108 Ries F,Nagy B S Z.Function Analysis(Vol 2)泛函 分析讲义(第二卷).科学出版社,1980.110~116.
  • 5Collobert R,Bengio S. Support Vector Machines for Large-Scale Regression Problems ,IDIAP-RR-00-17,2000.
  • 6Snika A,Scholkopf V. A tutorial on support vector regression.NeuroColt 2 : [TR 1998-03]. 1998.
  • 7Platt J C. Fast training of support vector machines using sequential minimal optimization. Advances in Kernel Methods,MIT press, 1999. 271~284.
  • 8Shevade S K, et al. Improvements to SMO Algorithm for SVM Regression.- [Technical Report CD-99-16].
  • 9Weston J, Watkins C. Multi-class Support Vector Machines:[Techical Report CSD-TR-9804].
  • 10Training Support Vector Machines: An Application to Face Detection.

共引文献26

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部