期刊文献+

邮件服务智能代理的研究 被引量:1

Research on intelligent agent for mail server
下载PDF
导出
摘要 分析邮件特征对邮件分类的影响,提出了双层分类方法并用于邮件服务智能代理。它包括邮件长度分类、邮件采集与预处理、文本分词、特征选取和邮件分类器等功能模块。此代理不仅可使邮件服务器具有自动过滤垃圾邮件的能力,也可以用于电子政务和电子商务,对邮件自动分类和转发。该双层分类方法首先对邮件按长度进行分类,然后根据邮件的不同长度类分别使用不同的贝叶斯分类器,从而实现垃圾邮件的过滤。实验表明它有效地提高了邮件分类的效率。 The influence of E-mail structure on mail classification is analyzed, and bi-layer classification method applied to intelligent agent for mail sever is proposed including these modules: Mail length classification, collection and pretreatment of E-mail, Chinese words segmentation, feature selection and the classification of E-mail. This Agent can not only support the ability of automatically filter spam, but also apply to E-government E-business for automatic classification and transmission orE-mail. First mails are classified according to different length, and then are trained by different Bays classifier for filtering spam. Experiments indicated that the bi-layer classification method is of high classification precision and efficiency.
出处 《计算机工程与设计》 CSCD 北大核心 2007年第3期683-686,共4页 Computer Engineering and Design
关键词 邮件分类 贝叶斯分类器 特征选取 中文分词 双层分类 mail classification Bays classifier feature selection Chinese word segmentation bi-layer classification
  • 相关文献

参考文献6

  • 1Richard O Duda,Peter E Hart,David G Stork.模式分类[M].Second Edition.北京:机械工业出版社,2003.16-60.
  • 2张俐.机器学习方法在基于内容的垃圾邮件过滤中的研究[D].东北:东北大学,2004.
  • 3TomMMitchell.机器学习[M].北京:机械工业出版社,2003..
  • 4Andrew R Webb.统计模式识别[M].Second Edition.北京:电子工业出版社,2004.1 98-237.
  • 5王斌,许洪波,王申.基于结构特征的nBayes双层过滤模型[J].计算机应用,2006,26(1):191-194. 被引量:4
  • 6尹朝庆 尹皓.人工智能与专家系统[M].北京:中国水利水电出版社,2001.31-32,296-302.

二级参考文献13

  • 1ANDROUTSOPOULOS I, KOUTSIAS J, CHANDRINOS KV, et al.An Evaluation of Naive Bayesian Anti-Spam Filtering[A]. Proc. of the Workshop on Machine Learning in the New Information Age,Ⅱth European Conference on Machine Learning ( ECML'00)[C].2000.9-17.
  • 2DRUCKER H, WU D, VAPNIK VN. Support Vector Machines for Spam Categorization[J]. IEEE Transactions on Neural Networks,1999,20(5):1048 - 1054.
  • 3FAWCETF T. "In vivo" spam filtering: A challenge problem for data mining[J]. KDD Explorations, 2003, 5(2) : 203 -231.
  • 4LEWIS DD, RINGUETIE M. Comparison of two learning algorithms for text categorization[A]. Proceedings of SDAIR[C]. 1994. 81 -93.
  • 5CRANOR LF, LAMACCHIA BA. Spam![M]. ACM Press, 1998.74 - 83.
  • 6McCALLUM A, ROSENFELD R, MITCHELL T, et al. Improving text classification by shrinkage in a hierarchy of classes[A]. Proceedings of the Fifteenth International Conference on Machine Learning[C]. 1998. 359 -367.
  • 7MITCHELL TM. Machine Learning[M]. McGrawHill, 1997.
  • 8潘文峰.[D].中国科学院计算技术研究所,2004.
  • 9RISH I, HELLERSTEIN J, JAYRAM T. An analysis of data characteristics that affect naive Bayes performance[R]. Technical Report RC21993, IBM T. J. Watson Research Center, 2001.
  • 10RISH I. An Empirical Study of the Naive Bayes Classifier[A].Proceedings of IJCAI-01 Workshop on Empirical Methods in Artificial Intelligence[C]. 2001.

共引文献97

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部