期刊文献+

基于支持向量机的货币识别应用研究

Research of currency recognition based on support vector machines
下载PDF
导出
摘要 支持向量机是一种新的基于统计学习理论的机器学习算法,它可以应用于小样本、非线性和高维模式识别。研究了支持向量机的学习算法,依据支持向量机的特点采用了相应的货币特征数据获取及预处理方法,提出采用改进SMO训练算法和DAGSVM多值分类算法构建的支持向量机用于货币识别,从而达到对货币高效、准确识别。实验结果证实了该方案的有效性。
出处 《计算机系统应用》 2007年第4期100-103,共4页 Computer Systems & Applications
  • 相关文献

参考文献2

二级参考文献18

  • 1许建华.图像处理与分析[M].北京:科学出版社,1992.20-40.
  • 2[1]Vapnik V.The Nature of Statistical Learning Theory.New York:Springer-Verlag,1995
  • 3[2]Cortes CVapnik V.Support Vector Networks.Machine Learning,1995;20:273~297
  • 4[3]Osuna E,Freund R,Girosi F.Training Support Vector Machines:An Application to Face Detection.In:Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition,New York:IEEE,1997:130~136
  • 5[4]Dumais S,Platt J,Heckerman D,Sahami M.Inductive Learning Algorithms and Representations for Text Categorization.In:Proceedings of the 7th International Conference on Information and Knowledge Management,1998
  • 6[5]Joachims T.Text Categorization with Support Vector Machines:Learning with Many Relevant Features.In:Proceedings of the 10th European Conference on Machine Learning,1998
  • 7[6]Courant R,Hilbert D.Methods of Mathematical Physics. Volume 1,Berlin:Springer-Verlag,1953
  • 8[7]Stitson M O,Weston J A E,Gammerman A,Vovk V,Vapnik V.Theory of Support Vector Machines.Technical Report CSD-TR-96-17, Royal Holloway University of London,1996.12.31
  • 9[8]Osuna E,Freund R,Girosi F.Support Vector Machines:Training and Applications.AI Memo 1602,MIT AI Lab,1997
  • 10[9]Osuna E,Freund R,Girosi F.An Improved Training Algorithm for Support Vector Machines.In:Principe J,Gile L,Morgan N,Wilson E eds.,Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing,New York:IEEE,1997:276~285

共引文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部