期刊文献+

Banach空间中常微分方程解的存在唯一性定理的注 被引量:2

A note of the existence and uniqueness of solution of differential equations in Banach space
下载PDF
导出
摘要 把B anach空间常微分方程解的存在唯一性定理中解x(t)的变量t的范围t∈[t0-,αt0+α],α=min1/K,b/M扩大成t∈t0-b/M,t0+b/M,并对改进条件后的定理进行了严格证明. A condition of solution of differential equations in Banach space t ∈ [t0-a,t0 + a] where a= min { 1/K, b/M } is improved. That is, t∈ [t0-b/M,t0+b/M3. Hence the existed interval of solution is expanded.
出处 《扬州大学学报(自然科学版)》 CAS CSCD 2007年第1期1-3,共3页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(19671042)
关键词 BANACH空间 常微分方程 解的存在唯一性定理 Banach space differential equation existence and uniqueness of solution
  • 相关文献

参考文献8

二级参考文献14

  • 1Heikkila S,Leela S. On the solvability of the second order initial value problems in Banach Spaces[J], Dynamic Systems and Appl,1992,1(2):41~70.
  • 2Heinz H P. On the behavior of measure of noncompactness with respect to differentiation and integration of vector-valued functions [J]. Nonlinear Anal, 1983,7:1351~137l.
  • 3Monch H. Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces[J]. Nonlinear Anal, 1980,4:985~999.
  • 4Guo Dajun,Lakshmikantham V. Coupled fixed points of nonlinear operators with applications [J]. NonlinearAnal,1987,11:623~632.
  • 5Guo Dajun, Lakshmikantham V,Liu Xinzhi. Nonlinear integral equations in abstract spaces [M]. Boston:Kluwer Academic Publishers, 1996.
  • 6Guo Dajun,Lakshmikantham V. Nonlinear problems in abstract cones[M]. Boston: Academic Press, 1988.
  • 7Deimling K. Nonlinear functional analysis [M]. Berlin:Springer-Verlag, 1985.
  • 8Ronald E. Bruck. A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces[J] 1979,Israel Journal of Mathematics(2-3):107~116
  • 9洪世煌,胡适耕.Banach空间中二阶常微分方程初值问题解的存在唯一性[J].应用数学和力学,1999,20(3):277-285. 被引量:4
  • 10陈芳启.Banach空间中混合单调脉冲微分-积分方程解的存在性[J].系统科学与数学,1999,19(1):111-115. 被引量:9

共引文献7

同被引文献25

  • 1Dong Q,Fan Z,Li G.Existence of Solutions to Nonlocal Functional Differential and Integrodifferdntial Equations[J].International Journal of Nonlinear Science,2008,5(2):140-151.
  • 2Fan Z,Dong Q,Li G.Semilinear differential equations with nonlocal conditions in Banach spaces[J].International Journal of Nonlinear Science,2006,2(3):131-139.
  • 3Bahuguna D.Quasilinear intergrodifferential equations in Banach spaces[J].Nonlinear Anal,1993,24:175-183.
  • 4Benchohar M,Ntouyas S K.Nonlocal Cauchy problems for neutral functional differential and integridifferential inxlusions[J].H Math Anal Appl,2001,258:573-590.
  • 5Ntouyas S K,Tsamtos P C.Global existence for semilinear evolution equations with nonlocal conditions[J].J Math Anal Appl,1997,210:679-687.
  • 6Pazy A.Semigrops of linear operators and applications to partial equations[M].New york:Springer-Verlag,1980:74.
  • 7BANAS J,GOEBEL K.Measure of noncompactness in Banach space[M].BANAS J.Lecture Notes in Pure and Applied Matyenath.New york:Dekker,1980:9-61.
  • 8Agarwal R,Meehan M,O'Regan D.Fixed point theory and applications[M].AGARWAL R.Cambridge Tracts in Mathematics.New York:Cambridge University Press,2001:178-179.
  • 9Kamensen M,Obukhovshe V,Zecca P.Condensing multivalued maps and semilinar differential inclusions in Banach spaces[J].Nomlinear Anal Appl,2001,792:104-108.
  • 10HEINZ H P.On the behavior of measure of noncompactness with respect to differentiation and integration of vector-valred functions[J].Nonlinear Anal TAMA,1993,7:1351-1371.

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部