期刊文献+

基于聚类的优化协作过滤技术 被引量:1

Research on clustering-based collaborative filtering
下载PDF
导出
摘要 基于内存的协作过滤算法主要利用用户对某站点项目的评分,计算2个用户之间的相似性,但该方法可扩展性差.基于模型的协作过滤算法通过训练数据预先计算出预测模型,弥补了上述方法的不足,但该模型没有考虑到个体的差异而限制了推荐的性能.在总结现有2种算法特点的基础上,提出一种新颖的协作过滤框架,它先从训练集中产生聚类,并以此为基础进行邻居预选择,再在预选择的邻居集合上使用基于内存的协作过滤算法.实验结果表明,该方法不仅提高了计算的效率,而且也提高了推荐的质量. Algorithms about memory-based collaborative filtering mainly use the rating of the user to the items to compute the similarity between two users. However, such algorithms are deficient in scalability. Algorithms about model-based collaborative filtering alleviate it through pre-training the model. But the algorithms ignore the diversity of different users. This paper proposes a algorithm to combine the advantages of two algorithms. The users are clustered in advance and the neighbors are pre-selected. Then, the memory-based collaborative on a subset of the users are done. Experiments show that the proposed approach not only improves the efficiency of the computation, but also improves the quality of the recommendation.
作者 周峰 姜艺
出处 《扬州大学学报(自然科学版)》 CAS CSCD 2007年第1期47-50,共4页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(60673060) 江苏省自然科学基金资助项目(BK2005046)
关键词 协作过滤 聚类 邻居预选择 collaborative filtering clustering neighbor pre-selection
  • 相关文献

参考文献11

  • 1RESNICK P,IACOVOU N,SUCHAK M,et al.Grouplens:an open architecture for collaborative filtering of netnews[C]//Proceedings of the ACM Conference on Computer Supported Cooperative Work.[S.l.]:ACM Press,1994:175-186.
  • 2BREESE J S,HECKERMAN D,KADIE C.Empirical analysis of predictive algorithms for collaborative filtering[C]//Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence.San Francisco:Morgan Kaufmann Publishers Inc,1998:43-52.
  • 3SOBOROFF I M,NICHOLAS C.Collaborative filtering and the generalized vector space model[C]//Proceedings of the 23rd Annual International Conference on Research and Development in Information Retrieval (SIGIR).Athens,Greece:ACM Press,2000:351-353.
  • 4KOHRS A,MERIALDO B.Clustering for collaborative filtering applications[C]//Proceedings of CIMCA' 99:Control and Automation.[S.l.]:IOS Press:1999:199-204.
  • 5UNGAR L H,FOSTER D P.Clustering methods for collaborative filtering[C]//Proceedings Workshop on Recommendation Systems at the 15th National Conf on Artificial Intelligence.Menlo Park,CA:AAAI Press,1998:112-125.
  • 6FISHER D,HILDRUM K,HONG J,et al.SWAMI:a framework for collaborative filtering algorithm development and evaluation[C]//Proceedings of the 23rd Annual International Conference on Research and Development in Information Retrieval (SIGIR).Athens,Greece:ACM Press,2000:366-368.
  • 7SARWAR B M,KARYPIS G,KONSTAN J A,et al.Application of dimensionality reduction in recommender systems:a case study[C]//ACM WebKDD Workshop.San Diego,California:ACM Press,2000:82-90.
  • 8HOFMANN T,PUZICHA J.Latent class models for collaborative filtering[C]//Proceedings of the 16th International Joint Conference on Artificial Intelligence.[S.l.]:Morgan Kaufmann Publishers Inc,1999:688-693.
  • 9GOLDBERG K,ROEDER T,GUPTA D,et al.Eigentaste:a constant time collaborative filtering algorithm[J].Information Retrieval,2001,4(2):133-151.
  • 10ZENG Chun,XING Chun-xiao,ZHOU Li-zhu.Similarity measure and instance selection for collaborative filtering[C]//Proceedings of 12th ACM International World Wide Web Conference.Manhattan:ACM Press,2003:652-658.

二级参考文献10

  • 1赵敏涯,沈洁,陈志敏,林颖.一种新的自动文本分类的算法[J].扬州大学学报(自然科学版),2006,9(1):62-65. 被引量:1
  • 2ALON Y, ANAND R, JOANN J. Querying heterogeneous information sources using .source descriptions [C]//Proceedings of the 22nd VLDB Conference. Bombay: [s. n.], 1996: 251-262.
  • 3MENG Wei-yi, LIU King-lup, WANG Xiao-dong. Determining text databases to search in the internet [C]//VLDB Conference. New York: [s.n.], 1998: 566-576.
  • 4ROCOO D, CAVERLEE J, LIU Ling. Exploiting the deep web with DynaBot: matching, probing, and ranking[C]//WWW 2005. Chiba: [s.n.], 2005: 1174-1175.
  • 5MICHAEL K. The deep web: surfacing hidden value [M]. Michigan: The University of Michigan Press, 2001.
  • 6BRIN S, PAGE L. The anatomy of a large-scale hypertextual web search engine [C]// Proceedings of the Seventh International World Wide Web Conference. Stanford :[s. n.], 1998 : 1123-1134.
  • 7McSHERRY F. A uniform approach to accelerated PageRank computation [C]//WWW 2005. Chiba: [s. n.],2005: 575-582.
  • 8CHO J, ROY S. Page quality : in search of an unbiased web ranking [C]//SIGMOD 2005. Baltimore, Maryland :[s.n.], 2005: 688-690.
  • 9LANGLEY P. An analysis of bayesian classifiers [C]// Proc of the National Conf on Artificial Intelligence(AAAI'92). Menlo Park, CA: AAAI Press,2002: 223-228.
  • 10LIU Bing, GROSSMAN R, ZHAI Yan-hong. Mining data records in web pages [C]//SIGKDD'03. Washington, DC: [s.n.], 2003: 696-704.

同被引文献8

  • 1JACKSON J E. A user's guide to principal components [M]. New York: John Wiley & Sons, 1991.
  • 2SHEIKHOLESLAMI G, CHATTERJEE S, ZHANG A. WaveCluster: a multi-resolution clustering approach for very large spatial databases [C]//DAYAL U. Proc of the 24th VLDB Conf. San Fransisco: Morgan Kaufmann, 1998 : 428-439.
  • 3AGRAWAI. R, GEHRKE J, GUNOPULOS D, et al. Automatic subspace clustering of high dimensional data for data mining applications [C]// Proc 1998 ACM-SIGMOD Int Conf Management of Data. San Jose:[s.n.], 1998: 94-105.
  • 4CHENG C H, FU A W, ZHANG Y. Entropy: based subspace clustering for mining numerical data [C]// Proceedings of the 5th ACM SIGKDD. San Diego: ACM Press, 1999: 84-93.
  • 5GOIL S, NAGESH H, CHOUDHARY A. MAFIA: efficient and scalable subspace clustering for very large data sets [R]. Evanston: Northwestern University, 1999.
  • 6PILEVAR A H, SUKUMAR M. GCHL: a grid-clustering algorithm for high-dimensional very large spatial data bases [J]. Pattern Recognition Lett. 2005, 26:999-1010.
  • 7WOO K G, LEE J H, KIM M H. FINDIT: a fast and intelligent subspace clustering algorithm using dimension voting [J]. Inf & Software Tech, 2004, 46: 255-271.
  • 8SARAFIS I A, TRINDER P W, ZALZALA A M S. NOCEA: a rule-based evolutionary algorithm for efficient and effective clustering of massive high-dimensional databases[J]. Appl Soft Comput, 2007, 7:668-710.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部