摘要
基于内存的协作过滤算法主要利用用户对某站点项目的评分,计算2个用户之间的相似性,但该方法可扩展性差.基于模型的协作过滤算法通过训练数据预先计算出预测模型,弥补了上述方法的不足,但该模型没有考虑到个体的差异而限制了推荐的性能.在总结现有2种算法特点的基础上,提出一种新颖的协作过滤框架,它先从训练集中产生聚类,并以此为基础进行邻居预选择,再在预选择的邻居集合上使用基于内存的协作过滤算法.实验结果表明,该方法不仅提高了计算的效率,而且也提高了推荐的质量.
Algorithms about memory-based collaborative filtering mainly use the rating of the user to the items to compute the similarity between two users. However, such algorithms are deficient in scalability. Algorithms about model-based collaborative filtering alleviate it through pre-training the model. But the algorithms ignore the diversity of different users. This paper proposes a algorithm to combine the advantages of two algorithms. The users are clustered in advance and the neighbors are pre-selected. Then, the memory-based collaborative on a subset of the users are done. Experiments show that the proposed approach not only improves the efficiency of the computation, but also improves the quality of the recommendation.
出处
《扬州大学学报(自然科学版)》
CAS
CSCD
2007年第1期47-50,共4页
Journal of Yangzhou University:Natural Science Edition
基金
国家自然科学基金资助项目(60673060)
江苏省自然科学基金资助项目(BK2005046)
关键词
协作过滤
聚类
邻居预选择
collaborative filtering
clustering
neighbor pre-selection