期刊文献+

板几何中具反射边界条件的迁移算子的谱 被引量:3

The Spectrum of Transport Operator with Reflecting Boundary Condition in Slab Geometry
下载PDF
导出
摘要 在LP(1p<∞)空间研究了板几何中一类带反射边界条件具各向异性、连续能量、均匀介质迁移算子的谱,证明了该迁移算子生成C0半群的Dyson-Phillips展开式的二阶余项在LP(1<P<∞)(L1)空间中是紧(弱紧)的,从而得到了该迁移算子的占优本征值的存在性等结果. The objective of this paper is to research spectral analyse of transport operator with anisotropic continuous energy homogeneous slab geometry in reflecting boundary condition, it proves the transport operator generates a strongly continuous semigroup and the compactness properties of the second-order remained term of the Dyson-Phillips expansion for the Co semigroup, and to obtain the spectrum of the transport operator only consist of finite isolated eigenvalue which have a finite algebraic multiplicity in trip Г, and to prove the existence of the dominand eigenvalue .
出处 《应用泛函分析学报》 CSCD 2007年第1期90-96,共7页 Acta Analysis Functionalis Applicata
基金 江西省自然科学基金(0311022) 江西省高校重点学科经费资助
关键词 迁移算子 C0半群 二阶余项 占优本征值 transport operator Co semigroup the second remainder dominant eigenvalue
  • 相关文献

参考文献6

  • 1Khalid Latrach,Abdelkader Dehici.Spectral properties and time asymptotic behavior of linear transport equations in slab geometry[J].Mathematical Methods in the Applied Sciences,2001,24:689-711.
  • 2Wang Shenghua,Yang Mingzhu,Xu Genqi.The spectrum of the transport with generalized boundary conditions[J].Transport Theory and Statistical Physics,1996,25(7):811-823.
  • 3王胜华,郑远广.板几何中具完全反射边界条件迁移算子的谱分析[J].江西师范大学学报(自然科学版),2005,29(5):403-406. 被引量:8
  • 4王胜华,贾善德.板几何中一类具周期边界条件迁移算子的谱[J].西南师范大学学报(自然科学版),2005,30(6):964-970. 被引量:12
  • 5Pazy A.Semigroups of Linear Operator and Applications to Partial Differential Equations[M].Springer New York,1983.
  • 6Dunford N,Schwartz JT.Linear Operators.Part Ⅰ:General Theory[M].Wiley-Interscience:New York,1958.

二级参考文献15

  • 1Wang Shenghua, Yang Mingzhu, Xu Genqi. The spectrum of the transport operator with generalized boundary conditions[J]. Transport Theory and statistical physics , 1996,25(7) :811-823.
  • 2阳名珠 朱广田.具各向异性散射和裂变的中子迁移算子的谱[J].中国科学,1981,(1):25-30.
  • 3Khalid Latrach, Abdelkader Dehici. Spectral properties and time asymptotic behaviour of linear transport equations in slab geometry[ J].Mathematical Methods in the Applied Sciences,2001,24: 689-711.
  • 4Morhtar-Kharroubi M. Time asymptotic behaviour and compactness in neutron transport theory[ J ]. European Journal of Mechanics Bfluid,1992,11:39-68.
  • 5Khalid Latrach. On the spectrum of the transport operator with abstract boundary conditions in slab geometry[J]. Journal of Mathematical Analysis and Applications, 2000,252:1-17.
  • 6Voigt J. Spectral properties of the neutron transport equation[ J ]. Journal of Mathematical Analysis and Applications, 1985,106:140-153.
  • 7Wang Shenghua,Yang Mingzhu,Xu Genqi.The Spectrum of the Transport Operator with Generalized Boundary Conditions[J].Transport Theory and statistical physics,1996,25(7):811 -823.
  • 8Kha lid Latrach,Abdelkader Dehici.Spectral Properties and Time Asymptotic Behaviour of Linear Transport Equations in Slab Geometry[J].Mathematical Methods in the Applied Sciences,2001,24:689 -711.
  • 9Khalid Latrach,Morhtar-Kharroubi M.Spectral Analysis and Generation Results for Streaming Operators with Multiplying Boundary Conditions[ J].Positinity,1999,3:273-296.
  • 10Khalid Latrach.On the Spectrum of the Transport Operator with Abstract Boundary Conditions in Slab Geometry[J].Journal of Mathematical Analysis and Applications,2000,252:1 -17.

共引文献16

同被引文献13

  • 1王胜华,郑远广.板几何中具完全反射边界条件迁移算子的谱分析[J].江西师范大学学报(自然科学版),2005,29(5):403-406. 被引量:8
  • 2Khalid Latrach, Abdelkader Dehici. Spectral properties and time asymptotic behaviour of linear transport equations in slab geometry[J]. Mathematical Methods in the Applied Sciences,2001,24:689-711.
  • 3Wang Shenghua, Yang Mingzhu, Xu Genqi. The spectrum of the transport operator with generalizcd boundary conditions [J]. Transport Theory and Statistical Physics, 1996,25 (7):811- 823.
  • 4Morhtar Kharroubi M. Time asymptotic behaviour and compactness in neutron transport theory [J]. European Journal of Mechanics B Fluid,1992,11:39-68.
  • 5Mohamed Chabi, Khalid Latrach. Singular one-dimensional transport equations on space [J]. Journal of Mathematical Analysis and Applications. 2003. 383 : 319-336.
  • 6Khalid Latrach and AbdeUcader Dehici, Spectral properties and time asymptotic behaviour of linear transport equations in slab geometry, Mathematical Methods in the Applied Seiences,2001.24:689- 711.
  • 7Wang Shenghua, Yang Mingzhu and Xu Genqi, The Spectrum of the transport operator with generalized boundary conditions, Transport Theory and statistical physics, 1996,25(7) : 811 - 823.
  • 8Morhtar-Kharroubi M,Time asymptotic behaviour and compactness in neutron transport theory, European Journal of Mechanics B fluid, 1992,11:39 - 68.
  • 9Mohamed Chabi and Khalid Latrach, Singular one-dimensional transport equations on space,Journal of Mathematical Analysis and Applications, 2003,383 : 319 - 336.
  • 10Khalid Latrach, Abdelkader Dehici. Spectral properties and time asymptotic behaviour of linear transport equations in slab geometry[J]. Mathematical Methods in the Applied Sciences ,2001,24: 689-711.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部