摘要
在LP(1p<∞)空间研究了板几何中一类带反射边界条件具各向异性、连续能量、均匀介质迁移算子的谱,证明了该迁移算子生成C0半群的Dyson-Phillips展开式的二阶余项在LP(1<P<∞)(L1)空间中是紧(弱紧)的,从而得到了该迁移算子的占优本征值的存在性等结果.
The objective of this paper is to research spectral analyse of transport operator with anisotropic continuous energy homogeneous slab geometry in reflecting boundary condition, it proves the transport operator generates a strongly continuous semigroup and the compactness properties of the second-order remained term of the Dyson-Phillips expansion for the Co semigroup, and to obtain the spectrum of the transport operator only consist of finite isolated eigenvalue which have a finite algebraic multiplicity in trip Г, and to prove the existence of the dominand eigenvalue .
出处
《应用泛函分析学报》
CSCD
2007年第1期90-96,共7页
Acta Analysis Functionalis Applicata
基金
江西省自然科学基金(0311022)
江西省高校重点学科经费资助
关键词
迁移算子
C0半群
二阶余项
占优本征值
transport operator
Co semigroup
the second remainder
dominant eigenvalue