期刊文献+

带有非局部边界条件的反应——扩散方程解的爆破与整体存在 被引量:1

Blow-up and Global Existence of Solutions to a Reaction-diffusion Equation with Non-local Boundary Conditions
下载PDF
导出
摘要 考虑在有界区域中非局部边界条件下的一个反应-扩散方程,在一定条件下,该方程的解整体存在或有限时刻爆破.通过构造方程的上、下解,由比较原理,得到定理的证明. Considering a reaction-diffusion equation with non-local boundary conditions in bounded regions, we have found under some conditions the solutions of the equation blow up or exist globally. We have also proved the theorem by constructing the lower and upper solutions.
出处 《南通大学学报(自然科学版)》 CAS 2007年第1期4-7,19,共5页 Journal of Nantong University(Natural Science Edition) 
关键词 非局部边界条件 反应扩散方程 整体存在 有限时刻爆破 non-local boundary condition reaction-diffusion equation exist globally blow up in finite time
  • 相关文献

参考文献6

  • 1[1]Bebernes J.Mathematical problem from combusion theory[C]//Applied Mathematical Sciences.New York:Spring-Verlag,1993,83.
  • 2[2]Bebernes J,Bressan A.Thermal behavior for a confined reactive gas[J].J.Differential Equations,1982,44(1):118-133.
  • 3[3]Pao C V.Blowing-up of solution for a nonlocal reaction-diffusion problem in combustion theory[J].J.Math.Anal.Appl.,1992,166(2):591-600.
  • 4[4]Chadam J M,Peirce A,Yin H M.The blowup Property of solutions to some diffusion equations with localized nonlinear reactions[J].J.Math.Anal.Appl.,1992,169(2):313-328.
  • 5王术.一个非局部的反应扩散方程[J].河南大学学报(自然科学版),1996,26(4):9-16. 被引量:1
  • 6谌跃中,王远弟.非局部边界条件的特征问题及发展问题[J].应用数学,2004,17(2):203-209. 被引量:2

二级参考文献1

共引文献1

同被引文献11

  • 1Friedman A& Laeey A.A. Blow-up of solution of semilinear parabolic equations[c] ibid., 1988(132): 171-186.
  • 2M. Escobedo & H.A. Levine, Blow and global existence for a weakly coupled reaction-diffusion system [J]. C. R. Acad.Sci. Paris,1992.
  • 3Theodore K. Boni. On blow-up and asymptotic behavior of solutions to a nonlinear parabolic equation of second order,Asymptotic Analysis,1999: 187-208.
  • 4Fujita.H. On the blowing up of solutions of the Cauehy problem for ut=Au+u^1+α [J]. J.Fac.Sci.Univ.Tokyo(I), 1966 (13) : 109-124.
  • 5Levine.H. The role of critical exponents in blow up theorems[J]. Siam Rev., 1990(32):262-288.
  • 6Giga Y. &Kohn R.V. Asymptotically self-similar blow-up of semiloinear heat equations [J]. Comm.Pure Appl. Math., 1985 (38) : 297-319.
  • 7Lee Y. Y&Ni W.M. Global existence,large time behavior and life span of solutions of a semilinear parabolic Cauchy problem[J]. Trans. Amer. Math. soc,1992:365-377.
  • 8M.Escobedo &M.A. Herrero. Boundedness and blow up for a semlinear reaction-diffusion system [J]. Differential Equations, 1991,89 ( 1 ) : 176-202.
  • 9Weissler F. Single point blow-up of semilinear initial value problems [ J]. Differential Equations, 1984 (55):204- 224.
  • 10Friedman. A&Mcleod B. Blow-up of positive solutions of semilinear heat equations [J]. Indiana Univ.Math.J,1985 ( 34 ) : 425-447.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部